<  Back to the Polytechnique Montréal portal

Architectural Exploration of KeyRing Self-Timed Processors

Mickaël Fiorentino

Ph.D. thesis (2020)

Open Access document in PolyPublie
[img]
Preview
Open Access to the full text of this document
Terms of Use: All rights reserved
Download (4MB)
Show abstract
Hide abstract

Abstract

Over the last years, microprocessors have had to increase their performances while keeping
their power envelope within tight bounds, as dictated by the needs of various markets: from
the ultra-low power requirements of the IoT, to the electrical power consumption budget
in enterprise servers, by way of passive cooling and day-long battery life in mobile devices.
This high demand for power-efficient processors, coupled with the limitations of technology
scaling—which no longer provides improved performances at constant power densities—, is
leading designers to explore new microarchitectures with the goal of pulling more performances
out of a fixed power budget. This work enters into this trend by proposing a new
processor microarchitecture, called KeyRing, having a low-power design intent.
The switching activity of integrated circuits—i.e. transistors switching on and off—directly
affects their dynamic power consumption. Circuit-level design techniques such as clock-gating
are widely adopted as they dramatically reduce the impact of the global clock in synchronous
circuits, which constitutes the main source of switching activity. The KeyRing microarchitecture
presented in this work uses an asynchronous clocking scheme that relies on decentralized
synchronization mechanisms to reduce the switching activity of circuits. It is derived from
the AnARM, a power-efficient ARM processor developed by Octasic using an ad hoc asynchronous
microarchitecture. Although it delivers better power-efficiency than synchronous
alternatives, it is for the most part incompatible with standard timing-driven synthesis and
Static Timing Analysis (STA). In addition, its design style does not fit well within the existing
asynchronous design paradigms. This work lays the foundations for a more rigorous
definition of this rather unorthodox design style, using circuits and methods coming from the
asynchronous literature. The resulting KeyRing microarchitecture is developed in combination
with Electronic Design Automation (EDA) methods that alleviate incompatibility issues
related to ad hoc clocking, enabling timing-driven optimizations and verifications of KeyRing
circuits using industry-standard design flows. In addition to bridging the gap with standard
design practices, this work also proposes comprehensive experimental protocols that aims to
strengthen the causal relation between the reported asynchronous microarchitecture and a
reduced power consumption compared with synchronous alternatives.
The main achievement of this work is a framework that enables the architectural exploration
of circuits using the KeyRing microarchitecture.

Résumé

Les dernières décennies ont vu l'augmentation des performances des processeurs contraintes
par les limites imposées par la consommation d'énergie des systèmes électroniques : des très
basses consommations requises pour les objets connectés, aux budgets de dépenses électriques
des serveurs, en passant par les limitations thermiques et la durée de vie des batteries des
appareils mobiles. Cette forte demande en processeurs efficients en énergie, couplée avec
les limitations de la réduction d'échelle des transistors—qui ne permet plus d'améliorer les
performances à densité de puissance constante—, conduit les concepteurs de circuits intégrés
à explorer de nouvelles microarchitectures permettant d'obtenir de meilleures performances
pour un budget énergétique donné. Cette thèse s'inscrit dans cette tendance en proposant
une nouvelle microarchitecture de processeur, appelée KeyRing, conçue avec l'intention de
réduire la consommation d'énergie des processeurs.
La fréquence d'opération des transistors dans les circuits intégrés est proportionnelle à leur
consommation dynamique d'énergie. Par conséquent, les techniques de conception permettant
de réduire dynamiquement le nombre de transistors en opération sont très largement
adoptées pour améliorer l'efficience énergétique des processeurs. La technique de clock-gating
est particulièrement usitée dans les circuits synchrones, car elle réduit l'impact de l'horloge
globale, qui est la principale source d'activité. La microarchitecture KeyRing présentée dans
cette thèse utilise une méthode de synchronisation décentralisée et asynchrone pour réduire
l'activité des circuits. Elle est dérivée du processeur AnARM, un processeur développé par
Octasic sur la base d'une microarchitecture asynchrone ad hoc. Bien qu'il soit plus efficient
en énergie que des alternatives synchrones, le AnARM est essentiellement incompatible avec
les méthodes de synthèse et d'analyse temporelle statique standards. De plus, sa technique
de conception ad hoc ne s'inscrit que partiellement dans les paradigmes de conceptions asynchrones.
Cette thèse propose une approche rigoureuse pour définir les principes généraux
de cette technique de conception ad hoc, en faisant levier sur la littérature asynchrone. La
microarchitecture KeyRing qui en résulte est développée en association avec une méthode
de conception automatisée, qui permet de s'affranchir des incompatibilités natives existant
entre les outils de conception et les systèmes asynchrones. La méthode proposée permet de
pleinement mettre à profit les flots de conception standards de l'industrie microélectronique
pour réaliser la synthèse et la vérification des circuits KeyRing. Cette thèse propose également
des protocoles expérimentaux, dont le but est de renforcer la relation de causalité
entre la microarchitecture KeyRing et une réduction de la consommation énergétique des
processeurs, comparativement à des alternatives synchrones équivalentes.

Department: Department of Electrical Engineering
Program: Génie électrique
Academic/Research Directors: Yvon Savaria, Claude Thibeault
PolyPublie URL: https://publications.polymtl.ca/5552/
Institution: Polytechnique Montréal
Date Deposited: 05 May 2021 11:22
Last Modified: 07 Jun 2023 12:04
Cite in APA 7: Fiorentino, M. (2020). Architectural Exploration of KeyRing Self-Timed Processors [Ph.D. thesis, Polytechnique Montréal]. PolyPublie. https://publications.polymtl.ca/5552/

Statistics

Total downloads

Downloads per month in the last year

Origin of downloads

Repository Staff Only

View Item View Item