Ralph Saber, David Henault, Nouredin Messaoudi, Rolando Rebolledo, Emmanuel Montagnon, Geneviève Soucy, John Stagg, An Tang, Simon Turcotte et Samuel Kadoury
Article de revue (2023)
Document en libre accès dans PolyPublie et chez l'éditeur officiel |
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (2MB) |
Abstract
Background
Finding a noninvasive radiomic surrogate of tumor immune features could help identify patients more likely to respond to novel immune checkpoint inhibitors. Particularly, CD73 is an ectonucleotidase that cata- lyzes the breakdown of extracellular AMP into immunosuppressive adenosine, which can be blocked by therapeutic antibodies. High CD73 expression in colorectal cancer liver metastasis (CRLM) resected with curative intent is associ- ated with early recurrence and shorter patient survival. The aim of this study was hence to evaluate whether machine learning analysis of preoperative liver CT-scan could estimate high vs low CD73 expression in CRLM and whether such radiomic score would have a prognostic significance.
Methods
We trained an Attentive Interpretable Tabular Learning (TabNet) model to predict, from preoperative CT images, stratified expression levels of CD73 (CD73High vs. CD73Low ) assessed by immunofluorescence (IF) on tissue microarrays. Radiomic features were extracted from 160 segmented CRLM of 122 patients with matched IF data, preprocessed and used to train the predictive model. We applied a five-fold cross-validation and validated the perfor- mance on a hold-out test set.
Results
TabNet provided areas under the receiver operating characteristic curve of 0.95 (95% CI 0.87 to 1.0) and 0.79 (0.65 to 0.92) on the training and hold-out test sets respectively, and outperformed other machine learning models. The TabNet-derived score, termed rad-CD73, was positively correlated with CD73 histological expression in matched CRLM (Spearman’s ρ = 0.6004; P < 0.0001). The median time to recurrence (TTR) and disease-specific survival (DSS) after CRLM resection in rad-CD73High vs rad-CD73 Low patients was 13.0 vs 23.6 months (P = 0.0098) and 53.4 vs 126.0 months (P = 0.0222), respectively. The prognostic value of rad-CD73 was independent of the standard clinical risk score, for both TTR (HR = 2.11, 95% CI 1.30 to 3.45, P < 0.005) and DSS (HR = 1.88, 95% CI 1.11 to 3.18, P = 0.020).
Mots clés
Cancer; Immune checkpoint; Adenosine pathway; CD73; Radiomic biomarker; Interpretable machine
Renseignements supplémentaires: | MedICAL Laboratory |
---|---|
Sujet(s): | 1900 Génie biomédical > 1900 Génie biomédical |
Département: |
Département de génie informatique et génie logiciel Institut de génie biomédical |
Centre de recherche: | Autre |
Organismes subventionnaires: | Canada Excellence Research Chairs, Government of Canada, Fonds de Recherche du Québec - Santé, National Science and Engineering Research Council of Canada (NSERC), Université de Montréal, Research Chair in Hepatopancreatobiliary Surgical Oncology., FRQ-S Young Clinician Scientist Seed, FRQS Clinician Scientist Junior-1&2 Salary Award, Institut du Cancer de Montréal establishment award, FRQ-S phase 1, International Hepato- Pancreato-Biliary Association (IHPBA, Kenneth Warren Research Fellowship, Ethicon Inc. (Johnson & Johnson) |
Numéro de subvention: | RGPIN-2020-06558, 32633, 30861, 298832 |
URL de PolyPublie: | https://publications.polymtl.ca/54819/ |
Titre de la revue: | Journal of Translational Medicine (vol. 21, no 1) |
Maison d'édition: | BioMed Central Ltd |
DOI: | 10.1186/s12967-023-04175-7 |
URL officielle: | https://doi.org/10.1186/s12967-023-04175-7 |
Date du dépôt: | 29 août 2023 15:32 |
Dernière modification: | 27 sept. 2024 11:47 |
Citer en APA 7: | Saber, R., Henault, D., Messaoudi, N., Rebolledo, R., Montagnon, E., Soucy, G., Stagg, J., Tang, A., Turcotte, S., & Kadoury, S. (2023). Radiomics using computed tomography to predict CD73 expression and prognosis of colorectal cancer liver metastases. Journal of Translational Medicine, 21(1), 16 pages. https://doi.org/10.1186/s12967-023-04175-7 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions