Abdelaziz Trabelsi, Otmane Ait Mohamed et Yves Audet
Article de revue (2015)
Document en libre accès dans PolyPublie et chez l'éditeur officiel |
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (622kB) |
Abstract
In estimating the linear prediction coefficients for an autoregressive spectral model, the concept of using the Yule-Walker equations is often invoked. In case of additive white Gaussian noise (AWGN), a typical parameter compensation method involves using a minimal set of Yule-Walker equation evaluations and removing a noise variance estimate from the principal diagonal of the autocorrelation matrix. Due to a potential over-subtraction of the noise variance, however, this method may not retain the symmetric Toeplitz structure of the autocorrelation matrix and there- by may not guarantee a positive-definite matrix estimate. As a result, a significant decrease in es- timation performance may occur. To counteract this problem, a parametric modelling of speech contaminated by AWGN, assuming that the noise variance can be estimated, is herein presented. It is shown that by combining a suitable noise variance estimator with an efficient iterative scheme, a significant improvement in modelling performance can be achieved. The noise variance is esti- mated from the least squares analysis of an overdetermined set of p lower-order Yule-Walker eq- uations. Simulation results indicate that the proposed method provides better parameter estimates in comparison to the standard Least Mean Squares (LMS) technique which uses a minimal set of evaluations for determining the spectral parameters.
Mots clés
ARMA Model, Noise Variance, Overdetermined Parametric Evaluation, Singular Value Representation, LMS Technique, Yule-Walker Equations
Sujet(s): | 2800 Intelligence artificielle > 2801 Langage naturel et reconnaissance de la parole |
---|---|
Département: | Département de génie électrique |
URL de PolyPublie: | https://publications.polymtl.ca/5154/ |
Titre de la revue: | Journal of Signal and Information Processing (vol. 6, no 2) |
Maison d'édition: | Scientific Research Publishing |
DOI: | 10.4236/jsip.2015.62010 |
URL officielle: | https://doi.org/10.4236/jsip.2015.62010 |
Date du dépôt: | 17 févr. 2023 15:35 |
Dernière modification: | 26 sept. 2024 23:45 |
Citer en APA 7: | Trabelsi, A., Mohamed, O. A., & Audet, Y. (2015). Robust parametric modeling of speech in additive white Gaussian noise. Journal of Signal and Information Processing, 6(2), 99-108. https://doi.org/10.4236/jsip.2015.62010 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions