<  Retour au portail Polytechnique Montréal

Robust parametric modeling of speech in additive white Gaussian noise

Abdelaziz Trabelsi, Otmane Ait Mohamed et Yves Audet

Article de revue (2015)

Document en libre accès dans PolyPublie et chez l'éditeur officiel
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: Creative Commons: Attribution (CC BY)
Télécharger (622kB)
Afficher le résumé
Cacher le résumé

Abstract

In estimating the linear prediction coefficients for an autoregressive spectral model, the concept of using the Yule-Walker equations is often invoked. In case of additive white Gaussian noise (AWGN), a typical parameter compensation method involves using a minimal set of Yule-Walker equation evaluations and removing a noise variance estimate from the principal diagonal of the autocorrelation matrix. Due to a potential over-subtraction of the noise variance, however, this method may not retain the symmetric Toeplitz structure of the autocorrelation matrix and there- by may not guarantee a positive-definite matrix estimate. As a result, a significant decrease in es- timation performance may occur. To counteract this problem, a parametric modelling of speech contaminated by AWGN, assuming that the noise variance can be estimated, is herein presented. It is shown that by combining a suitable noise variance estimator with an efficient iterative scheme, a significant improvement in modelling performance can be achieved. The noise variance is esti- mated from the least squares analysis of an overdetermined set of p lower-order Yule-Walker eq- uations. Simulation results indicate that the proposed method provides better parameter estimates in comparison to the standard Least Mean Squares (LMS) technique which uses a minimal set of evaluations for determining the spectral parameters.

Mots clés

ARMA Model, Noise Variance, Overdetermined Parametric Evaluation, Singular Value Representation, LMS Technique, Yule-Walker Equations

Sujet(s): 2800 Intelligence artificielle > 2801 Langage naturel et reconnaissance de la parole
Département: Département de génie électrique
URL de PolyPublie: https://publications.polymtl.ca/5154/
Titre de la revue: Journal of Signal and Information Processing (vol. 6, no 2)
Maison d'édition: Scientific Research Publishing
DOI: 10.4236/jsip.2015.62010
URL officielle: https://doi.org/10.4236/jsip.2015.62010
Date du dépôt: 17 févr. 2023 15:35
Dernière modification: 26 sept. 2024 23:45
Citer en APA 7: Trabelsi, A., Mohamed, O. A., & Audet, Y. (2015). Robust parametric modeling of speech in additive white Gaussian noise. Journal of Signal and Information Processing, 6(2), 99-108. https://doi.org/10.4236/jsip.2015.62010

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document