Kwassi Joseph Dzahini, Michael Kokkolaras et Sébastien Le Digabel
Article de revue (2022)
|
Libre accès au plein texte de ce document Version finale avant publication Conditions d'utilisation: Tous droits réservés Télécharger (977kB) |
Abstract
This work introduces the StoMADS-PB algorithm for constrained stochastic blackbox optimization, which is an extension of the mesh adaptive direct-search (MADS) method originally developed for deterministic blackbox optimization under general constraints. The values of the objective and constraint functions are provided by a noisy blackbox, i.e., they can only be computed with random noise whose distribution is unknown. As in MADS, constraint violations are aggregated into a single constraint violation function. Since all function values are numerically unavailable, StoMADS-PB uses estimates and introduces probabilistic bounds for the violation. Such estimates and bounds obtained from stochastic observations are required to be accurate and reliable with high, but fixed, probabilities. The proposed method, which allows intermediate infeasible solutions, accepts new points using sufficient decrease conditions and imposing a threshold on the probabilistic bounds. Using Clarke nonsmooth calculus and martingale theory, Clarke stationarity convergence results for the objective and the violation function are derived with probability one.
| Département: | Département de mathématiques et de génie industriel |
|---|---|
| Centre de recherche: | GERAD - Groupe d'études et de recherche en analyse des décisions |
| URL de PolyPublie: | https://publications.polymtl.ca/50833/ |
| Titre de la revue: | Mathematical Programming (vol. 198) |
| Maison d'édition: | Springer Nature |
| DOI: | 10.1007/s10107-022-01787-7 |
| URL officielle: | https://doi.org/10.1007/s10107-022-01787-7 |
| Date du dépôt: | 18 avr. 2023 14:58 |
| Dernière modification: | 09 août 2025 09:43 |
| Citer en APA 7: | Dzahini, K. J., Kokkolaras, M., & Le Digabel, S. (2022). Constrained stochastic blackbox optimization using a progressive barrier and probabilistic estimates. Mathematical Programming, 198, 675-732. https://doi.org/10.1007/s10107-022-01787-7 |
|---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions
