<  Retour au portail Polytechnique Montréal

Constrained stochastic blackbox optimization using a progressive barrier and probabilistic estimates

Kwassi Joseph Dzahini, Michael Kokkolaras et Sébastien Le Digabel

Article de revue (2022)

Document en libre accès dans PolyPublie
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version finale avant publication
Conditions d'utilisation: Tous droits réservés
Télécharger (977kB)
Afficher le résumé
Cacher le résumé

Abstract

This work introduces the StoMADS-PB algorithm for constrained stochastic blackbox optimization, which is an extension of the mesh adaptive direct-search (MADS) method originally developed for deterministic blackbox optimization under general constraints. The values of the objective and constraint functions are provided by a noisy blackbox, i.e., they can only be computed with random noise whose distribution is unknown. As in MADS, constraint violations are aggregated into a single constraint violation function. Since all function values are numerically unavailable, StoMADS-PB uses estimates and introduces probabilistic bounds for the violation. Such estimates and bounds obtained from stochastic observations are required to be accurate and reliable with high, but fixed, probabilities. The proposed method, which allows intermediate infeasible solutions, accepts new points using sufficient decrease conditions and imposing a threshold on the probabilistic bounds. Using Clarke nonsmooth calculus and martingale theory, Clarke stationarity convergence results for the objective and the violation function are derived with probability one.

Département: Département de mathématiques et de génie industriel
Centre de recherche: GERAD - Groupe d'études et de recherche en analyse des décisions
URL de PolyPublie: https://publications.polymtl.ca/50833/
Titre de la revue: Mathematical Programming (vol. 198)
Maison d'édition: Springer Nature
DOI: 10.1007/s10107-022-01787-7
URL officielle: https://doi.org/10.1007/s10107-022-01787-7
Date du dépôt: 18 avr. 2023 14:58
Dernière modification: 09 août 2025 09:43
Citer en APA 7: Dzahini, K. J., Kokkolaras, M., & Le Digabel, S. (2022). Constrained stochastic blackbox optimization using a progressive barrier and probabilistic estimates. Mathematical Programming, 198, 675-732. https://doi.org/10.1007/s10107-022-01787-7

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document