<  Retour au portail Polytechnique Montréal

More homogeneous capillary flow and oxygenation in deeper cortical layers correlate with increased oxygen extraction

Baoqiang Li, Tatiana V. Esipova, Ikbal Sencan, Kivilcim Kilic, Buyin Fu, Michèle Desjardins, Mohammad Moeini, Sreekanth Kura, Mohammad A. Yaseen, Frédéric Lesage, Leif Ostergaard, Anna Devor, David A. Boas, Sergei A. Vinogradov et Sava Sakadzic

Article de revue (2019)

Document en libre accès dans PolyPublie et chez l'éditeur officiel
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: Creative Commons: Attribution (CC BY)
Télécharger (955kB)
Afficher le résumé
Cacher le résumé

Abstract

Our understanding of how capillary blood flow and oxygen distribute across cortical layers to meet the local metabolic demand is incomplete. We addressed this question by using two-photon imaging of resting-state microvascular oxygen partial pressure (PO2) and flow in the whisker barrel cortex in awake mice. Our measurements in layers I-V show that the capillary red-blood-cell flux and oxygenation heterogeneity, and the intracapillary resistance to oxygen delivery, all decrease with depth, reaching a minimum around layer IV, while the depth-dependent oxygen extraction fraction is increased in layer IV, where oxygen demand is presumably the highest. Our findings suggest that more homogeneous distribution of the physiological observables relevant to oxygen transport to tissue is an important part of the microvascular network adaptation to local brain metabolism. These results will inform the biophysical models of layer-specific cerebral oxygen delivery and consumption and improve our understanding of the diseases that affect cerebral microcirculation.

Mots clés

Animals; Capillaries/*physiology; Cerebral Cortex/*physiology; *Cerebrovascular Circulation; Mice; Oxygen/*metabolism; Partial Pressure; *capillary blood flow; *capillary oxygenation; *cerebral cortex; *mouse; *neuroscience; *partial pressure of oxygen; *two-photon phosphorescence lifetime microscopy; declared

Sujet(s): 1900 Génie biomédical > 1900 Génie biomédical
Département: Institut de génie biomédical
Organismes subventionnaires: National Institutes of Health
Numéro de subvention: NS091230, MH111359, EB018464, NS092986, NS055104, AA027097
URL de PolyPublie: https://publications.polymtl.ca/5001/
Titre de la revue: eLife (vol. 8)
Maison d'édition: eLife Sciences Publications
DOI: 10.7554/elife.42299
URL officielle: https://doi.org/10.7554/elife.42299
Date du dépôt: 05 avr. 2022 14:35
Dernière modification: 23 mai 2023 12:50
Citer en APA 7: Li, B., Esipova, T. V., Sencan, I., Kilic, K., Fu, B., Desjardins, M., Moeini, M., Kura, S., Yaseen, M. A., Lesage, F., Ostergaard, L., Devor, A., Boas, D. A., Vinogradov, S. A., & Sakadzic, S. (2019). More homogeneous capillary flow and oxygenation in deeper cortical layers correlate with increased oxygen extraction. eLife, 8, e42299 (28 pages). https://doi.org/10.7554/elife.42299

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document