Dounia Lakhmiri, Ryan Alimo et Sébastien Le Digabel
Rapport technique (2020)
Un lien externe est disponible pour ce documentAbstract
The Mars Curiosity rover is frequently sending back engineering and science data that goes through a pipeline of systems before reaching its final destination at the mission operations center making it prone to volume loss and data corruption. A ground data system analysis (GDSA) team is charged with the monitoring of this flow of information and the detection of anomalies in that data in order to request a re-transmission when necessary. This work presents Δ -MADS, a derivative-free optimization method applied for tuning the architecture and hyperparameters of a variational autoencoder trained to detect the data with missing patches in order to assist the GDSA team in their mission.
Mots clés
anomaly detection; variational autoencoder; hyperparameter optimization; architecture search; derivative-free optimization
Département: | Département de mathématiques et de génie industriel |
---|---|
Centre de recherche: | GERAD - Groupe d'études et de recherche en analyse des décisions |
Organismes subventionnaires: | GRSNG / NSERC, MITACS Globalink, Polytechnique Montréal - Dept. of Applied Mathematics and Industrial Engineering - BFSD grant, InnovÉE, Hydro-Québec, Rio Tinto |
Numéro de subvention: | 490744-15 |
URL de PolyPublie: | https://publications.polymtl.ca/49110/ |
Numéro du rapport: | 2020-31 |
URL officielle: | https://www.gerad.ca/fr/papers/G-2020-31 |
Date du dépôt: | 18 avr. 2023 15:01 |
Dernière modification: | 25 sept. 2024 16:38 |
Citer en APA 7: | Lakhmiri, D., Alimo, R., & Le Digabel, S. (2020). Tuning a variational autoencoder for data accountability problem in the Mars Science Laboratory ground data system. (Rapport technique n° 2020-31). https://www.gerad.ca/fr/papers/G-2020-31 |
---|---|
Statistiques
Aucune statistique n'est disponible.