<  Back to the Polytechnique Montréal portal

Postmortem diffusion MRI of the entire human spinal cord at microscopic resolution

Evan Calabrese, Syed M. Adil, Gary Cofer, Christian S. Perone, Julien Cohen-Adad, Shivanand P. Lad, G. Allan Johnson

Article (2018)

Open Acess document in PolyPublie and at official publisher
Open Access to the full text of this document
Published Version
Terms of Use: Creative Commons Attribution Non-commercial No Derivatives
Download (1MB)
Show abstract
Hide abstract


The human spinal cord is a central nervous system structure that plays an important role in normal motor and sensory function, and can be affected by many debilitating neurologic diseases. Due to its clinical importance, the spinal cord is frequently the subject of imaging research. Common methods for visualizing spinal cord anatomy and pathology include histology and magnetic resonance imaging (MRI), both of which have unique benefits and drawbacks. Postmortem microscopic resolution MRI of fixed specimens, sometimes referred to as magnetic resonance microscopy (MRM), combines many of the benefits inherent to both techniques. However, the elongated shape of the human spinal cord, along with hardware and scan time limitations, have restricted previous microscopic resolution MRI studies (both in vivo and ex vivo) to small sections of the cord. Here we present the first MRM dataset of the entire postmortem human spinal cord. These data include 50mum isotropic resolution anatomic image data and 100mum isotropic resolution diffusion data, made possible by a 280h long multi-segment acquisition and automated image segment composition. We demonstrate the use of these data for spinal cord lesion detection, automated volumetric gray matter segmentation, and quantitative spinal cord morphometry including estimates of cross sectional dimensions and gray matter fraction throughout the length of the cord.

Uncontrolled Keywords

Cross-Sectional Studies; Diffusion Magnetic Resonance Imaging/methods; Gray Matter/*pathology; Humans; Image Processing, Computer-Assisted/methods; *Magnetic Resonance Imaging/methods; Male; Neuroimaging/methods; Spinal Cord/*pathology; Spinal Cord Diseases/pathology; White Matter/*pathology; *Gray matter; *Human; *Magnetic resonance microscopy; *Spinal cord; *Tractography

Subjects: 1900 Biomedical engineering > 1900 Biomedical engineering
1900 Biomedical engineering > 1901 Biomedical technology
2500 Electrical and electronic engineering > 2519 Microelectronics
2700 Information technology > 2708 Image and video processing
Department: Department of Electrical Engineering
Institut de génie biomédical
Research Center: Other
Funders: National Institutes of Health
Grant number: P41 EB015897, 1S10OD010683-01
PolyPublie URL: https://publications.polymtl.ca/4813/
Journal Title: NeuroImage: Clinical (vol. 18)
Publisher: Elsevier
DOI: 10.1016/j.nicl.2018.03.029
Official URL: https://doi.org/10.1016/j.nicl.2018.03.029
Date Deposited: 13 Jul 2021 10:11
Last Modified: 21 May 2023 00:21
Cite in APA 7: Calabrese, E., Adil, S. M., Cofer, G., Perone, C. S., Cohen-Adad, J., Lad, S. P., & Johnson, G. A. (2018). Postmortem diffusion MRI of the entire human spinal cord at microscopic resolution. NeuroImage: Clinical, 18, 963-971. https://doi.org/10.1016/j.nicl.2018.03.029


Total downloads

Downloads per month in the last year

Origin of downloads


Repository Staff Only

View Item View Item