Slim Belhaiza, Charles Audet and Pierre Hansen
Article (2014)
|
Published Version Terms of Use: Creative Commons Attribution . Download (472kB) |
Cite this document: | Belhaiza, S., Audet, C. & Hansen, P. (2014). A note on bimatrix game maximal Selten subsets. Arabian Journal of Mathematics, 3(3), p. 299-311. doi:10.1007/s40065-014-0101-x |
---|
Show abstract
Hide abstract
Abstract
In this paper, we implement automatic procedures to enumerate all Nash maximal subsets of a bimatrix game and compute their dimensions. We propose a linear programming approach to identify extreme perfect Nash equilibria, enumerate all Selten maximal subsets and compute their dimensions. We present the Eχ-MIPerfect and the EEE-Perfect algorithms which enumerate all extreme perfect Nash equilibria. We finally report and comment computational experiments on randomly generated bimatrix games with different size and density
![]() |
|
Subjects: |
1600 Génie industriel > 1600 Génie industriel 2950 Mathématiques appliquées > 2950 Mathématiques appliquées |
---|---|
Department: | Département de mathématiques et de génie industriel |
Research Center: | GERAD - Groupe d'études et de recherche en analyse des décisions |
Funders: | KFUPM, Deanship of Scientific Research |
Grant number: | IN101038 |
Date Deposited: | 08 Apr 2021 09:50 |
Last Modified: | 09 Apr 2021 01:20 |
PolyPublie URL: | https://publications.polymtl.ca/4776/ |
![]() |
|
Journal Title: | Arabian Journal of Mathematics (vol. 3, no. 3) |
---|---|
Publisher: | Springer |
Official URL: | https://doi.org/10.1007/s40065-014-0101-x |
Statistics
Total downloads
Downloads per month in the last year
Origin of downloads
Dimensions