
Titre:
Title:

A note on bimatrix game maximal Selten subsets

Auteurs:
Authors:

Slim Belhaiza, Charles Audet, & Pierre Hansen 

Date: 2014

Type: Article de revue / Article

Référence:
Citation:

Belhaiza, S., Audet, C., & Hansen, P. (2014). A note on bimatrix game maximal 
Selten subsets. Arabian Journal of Mathematics, 3(3), 299-311. 
https://doi.org/10.1007/s40065-014-0101-x

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/4776/

Version: Version officielle de l'éditeur / Published version 
Révisé par les pairs / Refereed 

Conditions d’utilisation:
Terms of Use: CC BY 

Document publié chez l’éditeur officiel
Document issued by the official publisher

Titre de la revue:
Journal Title:

Arabian Journal of Mathematics (vol. 3, no. 3) 

Maison d’édition:
Publisher:

Springer

URL officiel:
Official URL:

https://doi.org/10.1007/s40065-014-0101-x

Mention légale:
Legal notice:

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://doi.org/10.1007/s40065-014-0101-x
https://publications.polymtl.ca/4776/
https://doi.org/10.1007/s40065-014-0101-x


Arab J Math (2014) 3:299–311
DOI 10.1007/s40065-014-0101-x

Slim Belhaiza · Charles Audet · Pierre Hansen

A note on bimatrix game maximal Selten subsets

Received: 9 September 2013 / Accepted: 10 March 2014 / Published online: 9 April 2014
© The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract In this paper, we implement automatic procedures to enumerate all Nash maximal subsets of a
bimatrix game and compute their dimensions. We propose a linear programming approach to identify extreme
perfect Nash equilibria, enumerate all Selten maximal subsets and compute their dimensions. We present
the Eχ -MIPerfect and the EEE-Perfect algorithms which enumerate all extreme perfect Nash equilibria. We
finally report and comment computational experiments on randomly generated bimatrix games with different
size and density.

Mathematics Subject Classification 90C90 · 91A05 · 91A10

1 Introduction

A bimatrix game is a strategic confrontation of two players I and II. Both players could be political, social or
economic agents or institutions. Each player has a finite number of actions to choose from. The deterministic
choice of an action is called pure strategy. Player I has to choose between n pure strategies, while player II
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has to choose between m pure strategies. A bimatrix game G(A, B) is described through a pair of n × m

payoff matrices A and B. Elements ai j and bi j of matrices A and B are, respectively, the immediate payoffs
of player I and player II when the first plays his i th strategy while the second simultaneously plays his j th
strategy. Each player attempts to maximize his own payoff by selecting a probability vector over his set of
pure strategies. These vectors are combinations of pure strategies, called mixed strategies, and represented by
probability vectors x1 ∈ R

n and x2 ∈ R
m . Hence, player I’s payoff is x t

1 Ax2 and player II’s payoff is x t
1 Bx2.

A Nash equilibrium is defined as a profile of strategies such that simultaneously player I maximizes his
payoff given the strategic choice of player II and player II maximizes his payoff given the strategic choice
of player I. An equilibrium point is a profile of strategies where neither player has an interest to unilaterally
change his strategic choice. As shown by Nash [15], a bimatrix game has at least one equilibrium. Formally,
a Nash equilibrium is a pair of strategies (x̂1, x̂2) such that x̂1 ∈ X1(x̂2) and x̂2 ∈ X2(x̂1) where

X1(x̂2) = argmax
x1

x t
1 Ax̂2

s.t. x t
1en = 1,

x1 ≥ 0,

and

X2(x̂1) = argmax
x2

x̂ t
1 Bx2

s.t. et
m x2 = 1,

x2 ≥ 0,

and en and em are two (n × 1) and (m × 1) column vectors with all elements equal to 1. Clearly, X1(x̂2) for
fixed x̂2, and X2(x̂1) for fixed x̂1 are polytopes.

Mills [13], and Mangasarian and Stone [11] studied the optimality conditions of the preceding system to
establish necessary and sufficient conditions of equilibrium. Introducing real-valued variables α1 and α2, the
duals of the above linear programs are

minα1 α1
s.t. enα1 ≥ Ax̂2,

minα2 α2
s.t. α2et

m ≥ x̂ t
1 B.

Primal and dual feasibility conditions yield that a pair of strategies (x̂1, x̂2) is a Nash equilibrium if there exist
two scalars α̂1 and α̂2 satisfying

(x̂1, α̂2) ∈ X1 ≡ {(x1, α2) ∈ R
n+1 : x t

1 B ≤ α2et
m, x t

1en = 1, x1 ≥ 0},

and

(x̂2, α̂1) ∈ X2 ≡ {(x2, α1) ∈ R
m+1 : Ax2 ≤ enα1 , et

m x2 = 1, x2 ≥ 0}.

Moreover, from duality theory of linear programming, the optimal dual objective values α̂1 and α̂2 are, respec-
tively, equal to the primal optimal payoffs of players I and II

x̂ t
1 Ax̂2 = α̂1 and x̂ t

1 Bx̂2 = α̂2.

The set NE of all equilibrium points is the union of a finite number of polytopes called maximal Nash subsets

(Millham [12]). The set of vertices of the maximal Nash Subsets defines the set of extreme Nash equilibria.
Each Nash equilibrium can be obtained by a convex combination of some extreme Nash equilibria. We have
shown in [2] that complete enumeration of all bimatrix game extreme equilibria can be done through complete
enumeration of all extreme feasible solutions of a mixed 0 − 1 linear program with the following conditions
(1.1) and any linear objective function

x̂ t
1en = 1,

et
m x̂2 = 1,

x̂ t
1 B − α2et

m ≤ 0,

Ax̂2 − α1en ≤ 0,

x̂1 + u1 ≤ en,

x̂2 + u2 ≤ em,

(α1en − Ax̂2) − L1u1 ≤ 0,

(α2et
m − x̂ t

1 B) − L2u2 ≤ 0,

x̂1 ≥ 0, x̂2 ≥ 0,

u1 and u2 binary vectors,

(1.1)

with L1 and L2 defined as large positive scalars adequately chosen. As the number of extreme solutions to this
program could be very large, Game theorists introduced many refinements of the concept of Nash equilibria.
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The Perfectness concept is a refinement based on the idea that a reasonable equilibrium should be stable against
some slight perturbations in the equilibrium strategies [17].

In Sect. 2, we present automatic procedures to enumerate all Nash maximal subsets of a bimatrix game
and compute their dimensions. In Sect. 3, we show that the Perfectness certificate of a Nash equilibrium is
obtained through the optimization of a pair of linear programs. We propose a linear programming approach to
identify extreme perfect Nash equilibria, enumerate all Selten maximal subsets and compute their dimensions.
In Sect. 4, we present the Eχ -MIPerfect and the EEE-Perfect algorithms which enumerate all extreme perfect
Nash equilibria. In Sect. 5, finally, we report and comment computational experiments on randomly generated
bimatrix games with different size and density.

2 Enumeration of all maximal Nash subsets

The set NE of all equilibrium points is the union of a finite number of maximal Nash subsets. A subset T ⊂ NE

is a Nash subset if and only if every pair of elements in T is interchangeable, i.e. (x1, x2) ∈ T and (y1, y2) ∈ T

imply that (x1, y2) ∈ T and (y1, x2) ∈ T . A Nash subset T is called maximal if it is not properly contained in
another Nash subset (Jansen [6]). Any extreme equilibrium is an extreme point of one of these maximal Nash
subsets.

Enumeration of all maximal Nash subsets corresponding to a bimatrix game can be achieved using an
algorithm for the enumeration of all maximal cliques of a graph G. We define G = (V, E) as the graph
obtained from the analysis of the extreme Nash equilibria in NE, which was first defined as the set of all
Nash equilibria of the bimatrix game. The extreme points of NE define the set of nodes V of G while E is
the set of edges of G. Any edge in E is a connection between two nodes (extreme Nash equilibria) of G,
X = (x1, x2) ∈ V and Y = (y1, y2) ∈ V , if and only if X and Y are interchangeable.

Every clique of the graph G is a complete subgraph of G. Each clique of G corresponds then to a set of
extreme Nash equilibria, in which each extreme Nash equilibria is interchangeable with all others. Thus, a max-
imal Nash subset T is a maximal clique of G. Several papers study the maximal cliques enumeration problem.
We have coded a C++ version of the widely used algorithm of Bron and Kerbosch [7]. Our implementation of
this algorithm is included in the XGame1.0 package available in [5].

Example 2.1 Let A and B be the payoff matrices of a bimatrix game taken from Borm et al. [6]

A =

⎛

⎝

−3 −3 −3 −3
3 3 3 −6

−3 −3 −3 −3

⎞

⎠ B =

⎛

⎝

3 0 0 2
0 0 0 0
0 0 3 2

⎞

⎠ .

Using the Eχ M I P [2] algorithm, ten extreme Nash equilibria are enumerated (Table 1). This game has
six maximal Nash subsets T1 = {1, 2, 3, 4, 5, 6}, T2 = {4, 8}, T3 = {6, 10}, T4 = {7, 9}, T5 = {7, 10} and
T6 = {8, 9}.

The interchangeability graph G obtained from NE is represented by Fig. 1.

Table 1 Extreme Nash equilibria from Borm et al. [6]

Eq. x1 x2 α1 α2

1 0 1 0 0 0 1 0 3 0
2 0 1 0 0 1 0 0 3 0
3 0 1 0 1 0 0 0 3 0
4 0 1 0 0 0 1/3 2/3 −3 0
5 0 1 0 0 1/3 0 2/3 −3 0
6 0 1 0 1/3 0 0 2/3 −3 0
7 2/3 0 1/3 0 0 0 1 −3 2
8 1/3 0 2/3 0 0 1/3 2/3 −3 2
9 1/3 0 2/3 0 0 0 1 −3 2
10 2/3 0 1/3 1/3 0 0 2/3 −3 2
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Fig. 1 Interchangeability graph G = (V, E) from Borm et al. [6]

2.1 Maximal Nash subset geometry and dimension

To study the geometry and the dimension of maximal Nash subsets, we need to introduce some notation. Let
us define:

Sn =

{

x1 ∈ R
n, x1 ≥ 0,

n
∑

i=1

x1i = 1

}

and Sm =

⎧

⎨

⎩

x2 ∈ R
m, x2 ≥ 0,

m
∑

j=1

x2 j = 1

⎫

⎬

⎭

.

Heuer and Millham [8] showed that a maximal Nash subset for an n ×m-bimatrix game is a closed and convex
subset of Sn × Sm . This implied for Jansen [9] that a maximal Nash subset T is the Cartesian product of two
convex polytopes K (ẋ2) and L(ẋ1), such that (ẋ1, ẋ2) ∈ relint (T ) (relative interior of T ).

Then, T = K (ẋ2) × L(ẋ1), where

K (ẋ2) = {x1 ∈ Sn, (x1, ẋ2) ∈ NE} and L(ẋ1) = {x2 ∈ Sm, (ẋ1, x2) ∈ NE} .

For an equilibrium (x1, x2) of a bimatrix game G(A, B), M(A, x2) is defined as the set of pure best replies
of player I against x2:

M(A, x2) = {i ∈ N = {1, . . . , n}; Ai x2 = max
k∈N

Ak x2}, (2.1)

and similarly,
M(x1, B) = { j ∈ M = {1, . . . , m}; x t

1 B j = max
r∈M

x t
1 Br }, (2.2)

is the set of pure best replies of player II against x1.
We also define C(x1) = {i ∈ N ; x1i > 0} as the carrier of x1 and C(x2) = { j ∈ M; x2 j > 0} as the

carrier of x2.
Let G(A, B) be a bimatrix game and let T be a maximal Nash subset for the game G(A, B), then the

matrices A(T ) =
[

ai j

]

i∈M(A,x2), j∈C(x2)
and B(T ) =

[

bi j

]

i∈C(x1), j∈M(x1,B)
do not depend on the choice of

the point (ẋ1, ẋ2) ∈ relint (T ) (Jansen [9]).
Jansen proved that if (x1, x2) ∈ relint (T ), then dim [L(x1)] = |C(x2)|−rank [A(T )] and dim [K (x2)] =

|C(x1)| − rank [B(T )]. Since T is the Cartesian product of the two convex polytopes L(x1) and K (x2) and
L(x1) ∩ K (x2) = ∅, then dim(T ) = dim [L(x1)] + dim [K (x2)].

We use these results to implement an automatic procedure that determines the dimension of each maximal
Nash subset. To do so, we generate an equilibrium point (x1, x2) in the relative interior of the maximal Nash
subset T using a convex combination of the extreme equilibrium points of T , since T is convex and closed.
We then use exact arithmetics as in [3] to determine the rank of the corresponding matrices A(T ) and B(T ).
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Example 2.2 For the bimatrix game taken from Borm et al. [6], we have determined the dimensions of the six
maximal Nash subsets found (Table 2).

3 Extreme perfect equilibria

When decision-makers face a large set of Nash equilibria to choose from, additional rational concepts can be
used to refine the set. As described by Borm et al. [6], a maximal Selten subset is a set of interchangeable
perfect equilibria. Each maximal Selten subset is a subset of a maximal Nash subset and each extreme point of
a maximal Selten subset corresponds to an extreme perfect equilibrium. Borm et al. [6] mention also that each
maximal Selten subset is a face of a maximal Nash subset. To the best of our knowledge, the implementation of
computational methods to enumerate all maximal Selten subsets of bimatrix games was not achieved before.
However, the computation of normal form perfect equilibria was already achieved by von Stengel et al. [19] for
extensive two-person games. In their paper, von Stengel et al. use the sequence form of extensive two-person
games. Starting from an arbitrary vector, von Stengel et al. present an algorithm which traces an equilibrium
on a piecewise linear path in the sequence form strategy space. They show that if the starting vector represents
a pair of completely mixed strategies (x1i > 0 and x2 j > 0, ∀ i, j), then the equilibrium is normal form
perfect.

The properties of maximal Nash subsets allow us to define a complete method to systematically enumerate
all the extreme equilibria using the Eχ M I P [2] and the EEE [1] algorithms and determining which of
them correspond to a maximal Selten subset extreme point, i.e. an extreme perfect equilibrium. Using this
approach, automatic identification of all perfect extreme Nash equilibria is made possible. Let us first define
C M1(A, x2) = conv(M(A, x2)) and C M2(x1, B) = conv(M(x1, B)). The following definition summarizes
the definition of a perfect equilibrium given by Selten [17] .

Definition 3.1 Let G(A, B) be an n × m bimatrix game. An equilibrium (x̂1, x̂2) ∈ Sn × Sm is called perfect

if there exists a sequence
{

(xk
1 , xk

2)
}

k∈N
of completely mixed strategy pairs converging to (x̂1, x̂2), such that,

for all k ∈ N, x̂1 ∈ C M1(A, xk
2 ) and x̂2 ∈ C M2(xk

1 , B).

Selten [17] and Myerson [14] show that there is always at least one perfect equilibrium for any strategic form
game. To define an automatic procedure to identify perfect equilibria, we will use the following characterization
by Van Damme [18].

Definition 3.2 Let (x̂1, x̂2) be a Nash equilibrium of the bimatrix game. If there is a unit vector x1 such that
x t

1 A ≥ x̂ t
1 A and x t

1 A 
= x̂ t
1 A, or if there is a unit vector x2 such that Bx2 ≥ Bx̂2 and Bx2 
= Bx̂2, then (x̂1, x̂2)

is not perfect. Otherwise, (x̂1, x̂2) is said to be perfect.

This characterization of perfect equilibrium strategies can be used to show that it is possible to verify if
an equilibrium (x̂1, x̂2) is perfect or not. In the following Definition 3.3, we introduce two linear programs to
state an alternative definition of a perfect equilibrium.

Definition 3.3 The equilibrium (x̂1, x̂2) is perfect if and only if both of the optimal objective functions values
of the following linear programs are equal to zero

max
(x1,ǫ1)∈ℜn×ℜm

et
mǫ1 max

(x2,ǫ2)∈ℜm×ℜn
et

nǫ2

s.t et
nx1 = 1, s.t et

m x2 = 1,

x t
1 A ≥ x̂ t

1 A + ǫ1, Bx2 ≥ Bx̂2 + ǫ2,

x1, ǫ1 ≥ 0, x2, ǫ2 ≥ 0.

(3.1)

Table 2 Maximal Nash subsets dimensions from Borm et al. [6]

Ti Dimension

i = 1 4
i = 2 3
i = 3 3
i = 4 2
i = 5 2
i = 6 2
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To show the equivalence between Definitions 3.2 and 3.3, let (x∗
1 , ǫ∗

1 ) and (x∗
2 , ǫ∗

2 ) be optimal solutions
for the two programs (3.1). If one of the two optimal objective function values is strictly positive, then at
least one of the ǫ variables is strictly positive. Hence, there is at least one ǫi

1 > 0, i ∈ {1, 2, . . . , n}, or

ǫ
j
2 > 0, j ∈ {1, 2, . . . , m}, such that x t∗

1 Ai ≥ x̂ t
1 Ai + ǫi

1, or B j x∗
2 ≥ B j x̂2 + ǫ

j
2 , with Ai the i th row of

A and B j the j th column of B. Thus, we either have x t∗
1 Ai > x̂ t

1 Ai , or B j x∗
2 > B j x̂2. Therefore, we have

x t
1 A 
= x̂ t

1 A, or Bx2 
= Bx̂2, while x t∗
1 A ≥ x̂ t

1 A + ǫ1 and Bx∗
2 ≥ Bx̂2 + ǫ2 are both satisfied. Hence, the

equilibrium (x̂1, x̂2) is not perfect.
If the two optimal objective functions are equal to zero, then all of ǫ∗

1 and ǫ∗
2 vectors elements are equal to

zero. These ǫ∗
1 and ǫ∗

2 vectors correspond to the maximum slack vectors between x t∗
1 A and x̂ t

1 A, and between
Bx∗

2 and Bx̂2. Thus, x t∗
1 A = x̂ t

1 A and Bx∗
2 = Bx̂2. Hence, if all the ǫ variables are equal to zero the equilibrium

(x̂1, x̂2) is perfect. The two linear programs (3.1) are always feasible. For example, setting ǫ1 = 0 and x1 = x̂1
or ǫ2 = 0 and x2 = x̂2 always provides a feasible solution to each of the two linear programs.

Example 3.4 For the second extreme Nash equilibrium found for the bimatrix game taken from Borm et al. [6],
the corresponding pair of linear programs is expressed as follows:

max
x1,ǫ1

ǫ11 + ǫ12 + ǫ13 + ǫ14 max
x2,ǫ2

ǫ21 + ǫ23

s.t. s.t.
x11 + x12 + x13 = 1, x21 + x22 + x23 + x24 = 1,

−3x11 + 3x12 − 3x13 ≥ 3 + ǫ11, 3x21 + 2x24 ≥ 0 + ǫ21,

−3x11 + 3x12 − 3x13 ≥ 3 + ǫ12,

−3x11 + 3x12 − 3x13 ≥ 3 + ǫ13, 3x23 + 2x24 ≥ 0 + ǫ23,

−3x11 − 6x12 − 3x13 ≥ −6 + ǫ14,

x1, ǫ1 ≥ 0, x2, ǫ2 ≥ 0.

One should note that the exact arithmetics libraries used in [3] were used to obtain exact solutions for these
two linear programs. For this extreme Nash equilibrium, none of the ǫ1 j variables can exceed zero. However,
x̂ t

2 = (0, 1, 0, 0) is dominated by x t
2 = (0, 0, 0, 1), as ǫ21 = 2 and ǫ23 = 2. Thus, the second extreme Nash

equilibrium is not perfect.
Eight of the ten extreme Nash equilibria enumerated are perfect. These extreme perfect equilibria are 1, 3, 4,

6, 7, 8, 9 and 10. Given the Nash maximal subsets identified earlier, and by eliminating the second and the fifth
non-perfect extreme equilibria, the maximal Selten subsets of this game are: Sl1 = {1, 3, 4, 6}, Sl2 = {4, 8},
Sl3 = {6, 10}, Sl4 = {7, 9}, Sl5 = {7, 10} and Sl6 = {8, 9}.

3.1 Maximal Selten subset geometry and dimension

Let NP be the set of extreme perfect Nash equilibria of a bimatrix game. As a maximal Selten subset is a face
of a maximal Nash subset, Borm et al. [6] define a dimension relation for maximal Selten subsets.

Let Sl be a maximal Selten subset for a bimatrix game G(A, B). One can write:

Sl = U (ẋ2) × V (ẋ1),

where U (ẋ2) = {x1 ∈ Sn, (x1, ẋ2) ∈ NP} and V (ẋ1) = {x2 ∈ Sm, (ẋ1, x2) ∈ NP}.
Let us also define the matrices

A(Sl) =
[

ai j

]

i∈M(A,x2), j∈C(x2)
and B(Sl) =

[

bi j

]

i∈C(x1), j∈M(x1,B)
.

Hence, if (x1, x2) ∈ relint (Sl) then

dim [U (x1)] = |C(x2)| − rank [A(Sl)] and dim [V (x2)] = |C(x1)| − rank [B(Sl)] .

While this definition applies only for bimatrix games G(A, B) such that A, B > 0, it is well known that every
bimatrix game can be modified to make A, B > 0, and without changing the set of maximal Nash subsets.
For example, this can easily be done by adding 1 + |amin|, with amin = min ai j , to each element of A and
1 + |bmin|,with bmin = min bi j , to each element of B.

We can use this result to automatically compute the dimension of all maximal Selten subsets of a given
bimatrix game G(A, B). We extended the automatic procedure implemented in Sect. 2.1 to determine the
dimension of each maximal Selten subset obtained by identification of all extreme perfect Nash equilibria
using the linear programs presented in Definition 3.3.
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Example 3.5 We have determined the dimensions of the six maximal Selten subsets found for the bimatrix
game taken from Borm et al. [6] (Table 3).

3.2 Detection of extreme perfect Nash equilibria

We next combine the pair of linear programs proposed earlier (Definition 3.3) in a single linear program. The
optimal objective function value of this linear program would indicate if the Nash equilibrium is perfect or
not.

Proposition 3.6 The equilibrium (x̂1, x̂2) is perfect if and only if the optimal objective function value of the

following linear program Q(x̂1, x̂2) is equal to zero.

max
x1,x2,ǫ1,ǫ2

et
mǫ1 + et

nǫ2

s.t et
n x1 = 1,

et
m x2 = 1,

x t
1 A ≥ x̂ t

1 A + ǫ1
Bx2 ≥ Bx̂2 + ǫ2,

x1 ≥ 0, ǫ1 ≥ 0,

x2 ≥ 0, ǫ2 ≥ 0.

(3.2)

Proof If the optimal objective function is equal to zero, then all of ǫ∗
1 and ǫ∗

2 vectors elements are equal to
zero. These ǫ∗

1 and ǫ∗
2 vectors correspond to the maximum slack vectors between x t∗

1 A and x̂ t
1 A, and Bx∗

2 and
Bx̂2. Thus, x t∗

1 A = x̂ t
1 A and between Bx∗

2 = Bx̂2. At optimality, if all the ǫ variables are equal to zero the
equilibrium (x̂1, x̂2) is perfect. ⊓⊔

4 Enumeration of extreme perfect Nash equilibria

To detect all extreme perfect Nash equilibria of bimatrix games directly, the two state of the art algorithms
Eχ -MIP [2,3] and the EEE [1] were modified to incorporate the linear program (3.2) as a subproblem during
the enumeration of all extreme Nash equilibria. In this section, we show how the Eχ -MIP algorithm was
improved and extended order to enumerate all extreme perfect Nash equilibria. We also show how the EEE
was implemented in exact arithmetic and extended to achieve the main goal of this work.

4.1 The Eχ -MIPerfect algorithm

The algorithm Eχ -MIPerfect is an improved and extended version of the Eχ -MIP algorithm for the enumer-
ation of all extreme equilibria for bimatrix and polymatrix games. Eχ -MIPerfect generates a main branching
tree and many auxiliary trees. At each node of the main branching tree, a dichotomous branching over one of
the binary variables is performed.

The main tree seeks binary variables combinations involved in one or more extreme equilibria. An auxiliary
tree is generated from every main tree node offering an extreme feasible solution, i.e. an extreme Nash equi-
librium. Each binary variable combination involved in an extreme Nash equilibrium is then explored to find
all extreme perfect Nash equilibria resulting from this combination. To avoid redundant exploration of binary
variables combinations, a cutting constraint is inserted once auxiliary exploration is completed. Moreover,

Table 3 Maximal Selten subsets dimensions from Borm et al. [6]

Sli Dimension

i = 1 3
i = 2 3
i = 3 3
i = 4 2
i = 5 2
i = 6 2
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these cutting constraints are often redundant and can be eliminated to reduce the size of the program.

The master problem (P) corresponds to a 0 − 1 mixed linear program resulting from conditions (1.1)

max
x̂1,x̂2,u1,u2,α1,α2

x̂ t
1en + et

m x̂2

s.t.
(1) x̂ t

1en = 1,

(2) et
m x̂2 = 1,

(3) x̂ t
1 B − α2et

m ≤ 0,

(4) Ax̂2 − α1en ≤ 0,

(5) x̂1 + u1 ≤ en,

(6) x̂2 + u2 ≤ em,

(7) (α1en − Ax̂2) − L1u1 ≤ 0,

(8) (α2et
m − x̂ t

1 B) − L2u2 ≤ 0,

(9) x̂1 ≥ 0, x̂2 ≥ 0,

(10) u1 ∈ {0, 1}n and u2 ∈ {0, 1}m .

(4.1)

At each node of the main tree, a master problem (P) with at most two constraints fixing one or more binary
variables, and one or more combination of binary variables cutting constraints, is solved. This represents a
reduction in the number of binary variables fixing constraints compared to the original version of the Eχ -
MIP algorithm. Each time a new extreme Nash equilibrium is obtained, the corresponding subproblem (Q)
defined by Proposition 3.6 is solved. In the case where the optimal objective of the subproblem (Q) is equal
to zero, the extreme Nash equilibrium is perfect. At each node of an auxiliary tree node, a linear program
is solved. This linear program results from the 0 − 1 mixed linear program (4.1), i.e. master problem (P),
with one combination of binary variables fixing constraints and at most two constraints fixing one or more
continuous variables. This represents again a reduction in the number of continuous variables fixing constraints
compared to the original version of the Eχ -MIP algorithm. If a new extreme Nash equilibrium is obtained, the
corresponding subproblem (Q) defined by Proposition 3.6 is solved. In the case where the optimal objective
of the subproblem (Q) is equal to zero, the extreme Nash equilibrium is perfect.

4.1.1 Improvement of the variable fixing constraints

With the original version Eχ -MIP algorithm, at each node of the main tree one or more binary variables are
fixed to 0 or 1. This has been performed by adding one constraint for each variable set to a fixed value, i.e.
u

q
k = 0 or u

q
k = 1, where k (k = 1, 2) is the player’s index and q is the strategy’s index of player k. These

constraints are represented by quasi-empty rows with respect to the columns entries since one single variable
is considered at each new branching. One single entry of the inserted row is non-zero and the right hand side
is either equal to 1 or 0. Considering a bimatrix game where player I has n pure strategies and player II has
m pure strategies, n + m quasi-empty rows are added once the maximal depth in the main tree is reached.
One can think also that the same number of slack variables is added. Moreover, these equality constraints
would increase the degeneracy of the linear programs to be solved. This can be improved using the following
constraint formulation. Only two rows are added to the original 0 − 1 mixed linear program (P) to represent
the main tree branching.

For each branch where a binary variable u
q
k = 0, the column entry of u

q
k in the following condition is set

to 1;
For each u

q
k = 0 ⇒ 0 + · · · + u

q
k + · · · + 0 ≤ 0. (4.2)

The same way, for each branch where a binary variable u
q
k = 1, the column entry of u

q
k in the following

condition is set to 1;

For each u
q
k = 1 ⇒ 0 + · · · + u

q
k + · · · + 0 ≥ 0 + · · · + 1 + · · · + 0. (4.3)

At each node of an auxiliary tree, one or more real variables are fixed to 0. With the original version
Eχ -MIP algorithm, this has been performed by adding one constraint for each variable set to zero, i.e. x

q
k = 0.

Therefore, we can use the same formulation as for the binary variables branching.
For each branch where a real variable x

q
k = 0, the column entry of x

q
k in the following condition is set to 1;

For each x
q
k = 0 ⇒ 0 + · · · + x

q
k + · · · + 0 ≤ 0. (4.4)
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4.1.2 Eχ -MIPerfect pseudo-code

The Eχ -MIPerfect algorithm can be formally stated as follows.
Step a. Initialization.
Let

– P; Master problem defined by the mixed 0-1 linear program (4.1).
– Q; Subproblem defined by the linear program (3.2).
– X̂ ; Set of P’s real variables X̂ .
– X ; Set of Q’s real variables X .
– U ; Set of P’s binary variables.
– E = ∅; Set of extreme equilibria.
– NP = ∅; Set of extreme perfect Nash equilibria.
– N = 0; Depth level in the main tree.
– CR; main tree root node.
– C ; Current node.
– x̂

q
k ; Real variable associated with player k (k = 1, 2) q t h strategy.

– u
q
k ; Binary variable associated with player k (k = 1, 2) q t h strategy.

Set C = CR and go to step b.
Step b. Solving master problem.

If N ≤ |X̂ |, solve current node’s program P .
If the program is infeasible go to step d .
Else

– Let S = (X̂ , U ) be the solution obtained ; If X̂ /∈ E , add S to E and go to step c.
– Go to step d .

Step c. Solving subproblem.

Solve Q(X̂) to optimality. If the optimal objective of Q(X̂) is equal to 0, add X̂ to NP.
Step d. Auxiliary Branching.
If the current node C belongs to the main tree, set binary variables vector U at its value in S.
For each x̂

q
k > 0 ∈ X̂ : Set the entry of x

q
k to 1 in condition (4.4) and go to step b.

Step e. Main Branching.
If the current node belongs to the main tree, no extreme perfect equilibria can be found from this node or

its sons.
Else, return to the father node in the main tree and add a cutting constraint to eliminate the combination

of binary variables U in S.
Select a binary variable u

q
k ∈ U on which no branching was performed in the preceding nodes and such

that its real variable x
q
k is the closest to 1

2 .
Let p = N + 1.

If p ≤ |X̂ | set N = p and

– Set the entry of u
q
k to 1 in condition (4.2). If u

q
k = 1 in U : Remove the cutting constraint on the combination

of binary variables U and go to step b.
– Set the entry of u

q
k to 1 in condition (4.3). If u

q
k = 0 in U : Remove the cutting constraint on the combination

of binary variables U and go to step b.

Else (p > |X̂ |), go to step f .
Step f . End.
The sets E and NP contain, respectively, all extreme equilibria and all extreme perfect equilibria of the

bimatrix game.

Theorem 4.1 The algorithm Eχ -MIPerfect enumerates in finite time all extreme perfect Nash equilibria points

of any bimatrix game.

Proof The algorithm seeks all possible ways to satisfy the complementary conditions through the main branch-
ing tree and the auxiliary trees. If X̂ is an extreme perfect Nash equilibrium, there exists at least a path in the
branching tree generated by Eχ -MIPerfect leading to it. ⊓⊔
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4.2 The EEE-Perfect algorithm

This section illustrates the new exact arithmetics implementation of the EEE algorithm and its extension to
enumerate all extreme perfect Nash equilibria. The EEE algorithm determines all extreme Nash equilibria by
enumerating all vertices of X1 and X2 that satisfy the complementarity conditions x t

1(α1en − Ax2) = 0 and
(α2em − x t

1 B)x2 = 0, where

(x̂1, α̂2) ∈ X1 ≡
{

(x1, α2) ∈ R
n+1 : x t

1 B ≤ α2et
m, x t

1en = 1, x1 ≥ 0
}

,

(x̂2, α̂1) ∈ X2 ≡
{

(x2, α1) ∈ R
m+1 : Ax2 ≤ enα1 , et

m x2 = 1, x2 ≥ 0
}

.

The EEE algorithm considers the parametrized linear programs:

R1(x2) ≡ max
(x1,α2)∈X1

x t
1 Ax2 − α2, and R2(x1) ≡ max

(x2,α1)∈X2
x t

1 Bx2 − α1.

Indeed, the constraints appearing in the definition of X1 and X2 are those of the primal and dual problems.
The objective functions x t

1 Ax2 −α2 and x t
1 Bx2 −α1 are gaps between the primal and dual objective functions.

The structure of the algorithm presented in [1] almost directly applies. Given a pair of current subproblems
R̃1 and R̃2 at a given node of the search tree, we define the following subproblems:

Ri
1 to be R̃1 in which the constraint x1i ≥ 0 is replaced by x1i = 0,

R
j
1 to be R̃1 in which the constraint x t

1 B j ≤ α2 is replaced by x t
1 B j = α2,

R
j
2 to be R̃2 in which the constraint x2 j ≥ 0 is replaced by x2 j = 0,

Ri
2 to be R̃2 in which the constraint Ai x2 ≤ α1 is replaced by Ai x2 = α1.

We here state the pseudo code of the EEE-Perfect algorithm for enumeration of bimatrix games extreme
perfect Nash equilibria.

a. Initialization. Initialize the set of nodes to be explored to ND = {(x1, R1, R2)} where x1 is set to an
arbitrary initial value (for example x1 = ( 1

n
, 1

n
, . . . , 1

n
)). Go to step b.

b. Selection of a Node. If the set ND of nodes to be explored is empty, then stop. Otherwise, choose and
remove a node C from ND. If C = (x1, R̃1, R̃2) then go to step c, otherwise C = (x2, R̃1, R̃2) and go to step d.

c. Direct Feasibility Test (R2). If R̃2(x1) is infeasible then go to step b, otherwise choose (x2, α1) that
optimizes R̃2(x1), update (x1, α2) that optimizes R̃1(x2) and then go to step e.

d. Direct Feasibility Test (R1). If R̃1(x2) is infeasible then go to step b, otherwise choose (x1, α2) that
optimizes R̃1(x2), update (x2, α1) that optimizes R̃2(x1) and then go to step e.

e. Branching. Branch on the variable associated with the largest complementarity product x1i (α1 − Ai x2)

or (α2 − x t
1 B j )x2 j :

either ND = ND ∪ {(x2, Ri
1, R̃2), (x1, R̃1, Ri

2)}

or ND = ND ∪ {(x1, R̃1, R
j
2 ), (x2, R

j
1 , R̃2)}.

In the case where all complementarity products are already forced to be null, X̂ = (x̂1, x̂2) is an extreme
Nash equilibrium, go to step f, then:

let ND = ND ∪ {(x2, Ri
1, R̃2) : x1i > 0} ∪ {(x1, R̃1, Ri

2) : Ai x2 < α1}

∪ {(x1, R̃1, R
j
2 ) : x2 j > 0} ∪ {(x2, R

j
1 , R̃2) : x t

1 B j < α2}.

Go to step b.
f. Solving subproblem Q. Solve Q(X̂) to optimality. If the optimal objective of Q(X̂) is equal to 0, add

X̂ to NP.
The Steps c and d are considered as the backtracking steps. In each of them, only one problem R̃1 or R̃2 is

checked for feasibility as only one of them differs from its father. When this problem is feasible, these steps
end with feasible strategies x1 and x2 which are vertices of X1 and X2. Step e creates new nodes in the tree.
When the depth of the current node is less than or equal to n +m, (i.e. when at least one of the complementarity
conditions is not forced to be satisfied), two newsons are created. Otherwise, the corresponding solution defines
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equilibrium strategies since all the complementarity conditions are satisfied, and feasibility is insured by Steps
c and d; a new son is created for each strictly positive variable or slack variable.

Theorem 4.2 The algorithm EEE-Perfect enumerates in finite time all extreme perfect Nash equilibria of a

bimatrix game.

Proof The EEE-perfect algorithm seeks all possible ways to satisfy the complementary conditions through
its branching rules as shown in [1]. Step f verifies the perfectness of any extreme Nash equilibrium found.
Hence, if X̂ is an extreme perfect Nash equilibrium of a given bimatrix game, there exists at least one path in
the branching tree generated by EEE-Perfect leading to it. ⊓⊔

5 Computational results

Our computational experiments on randomly generated bimatrix games with different size and density are
presented in Table 4. Using C++ implementations of the Eχ -MIPerfect and the EEE-Perfect algorithms,
these experimental results were obtained under WindowsXP on workstations with 3.3GHz Intel Core i5 vPro
processors, and 3.2 GB RAM.

For the entries in Table 4, the column “Size” indicates the original size of the generated set of bimatrix
games. The column “d” indicates the density of the generated bimatrix games. For each given size and density,
we have randomly generated 30 different bimatrix games. The columns “n” and “m” indicate, respectively,
the average number of undominated strategies of the first and second players. The column “ne” indicates the
average number of extreme Nash equilibria enumerated. The column “np” indicates the average number of
extreme perfect Nash equilibria enumerated. The column “%” indicates the percentage of extreme perfect
equilibria with respect to the total number of extreme Nash equilibria. The column “nt” indicates the average
number of maximal Selten subsets enumerated. The column “dim” indicates the average dimension of each
maximal Selten subset. Finally, the column “time” indicates, on the 30 bimatrix games, the average execution
time (in seconds) per game, respectively, for the Eχ -MIPerfect algorithm (“Eχ -MIP”) and the EEE algorithm
(“EEE”).

5.1 Discussion

The experimental results show that the average dimension of the maximal Selten subsets increases with the size
of the bimatrix game. The results also show that the percentage of extreme perfect equilibria increases with
an increase in the bimatrix games density. The bimatrix games density has also an impact on the computing
time required by each algorithm to enumerate all extreme perfect Nash equilibria. For both algorithms, Eχ -
MIPerfect and EEE-Perfect, the computing times increase if the bimatrix games density decreases. Hence, for
the Eχ -MIPerfect algorithm, the computing time jumps from 269.11 seconds to 839.20 seconds when the
5 × 5 bimatrix games density drops from 50 to 25 %. Similarly, for the EEE-Perfect algorithm, the computing
time jumps from 57.44 to 180.29 s when the 5×5 bimatrix games density drops from 50 to 25 %. The sparsest
case where the bimatrix games density is 25 % appears to be the most time consuming for both algorithms for
every given bimatrix game’ size. This could be explained by the fact that the high number of zeros in the payoff
matrices reduces the number of dominated strategies and increases the number of extreme Nash equilibria by
offering a number of strategies with the same zero payoff for each player. This typical behavior was already
observed for the floating arithmetics implementations of the Eχ -MIP and the EEE algorithms by Audet et
al. [2], and for the exact arithmetics implementation of the original EEE algorithm by Avis et al. [4]. Finally,
the experimental results show that the EEE algorithm is on average much faster than the Eχ -MIP algorithm.
This can be explained by the fact that our exact arithmetics implementation of the Eχ -MIP algorithm uses
both of the Branch and Bound and the Simplex algorithms to optimize the 0 − 1 mixed linear programs while
the EEE algorithm just uses the Simplex algorithm implementation. However, the Eχ -MIP algorithm is still,
to the best of our knowledge, the only algorithm able to enumerate polymatrix games (more than 2 players)
extreme Nash equilibria. A future work would be to explore the possibility of extending the EEE algorithm to
polymatrix games and improve our current implementation.

123



310
A

rab
J

M
ath

(2014)
3:299–311

Table 4 Computational results on random bimatrix games (d = 25, 50, 75, 100%)

Size n m ne np % nt Dim Time n m ne np % nt Dim Time

Eχ-MIP EEE Eχ-MIP EEE

d = 0.25 d = 0.50
2 × 2 1.80 1.83 2.57 1.97 76.62 1.1 2.1 0.97 0.87 1.70 1.63 1.57 1.27 80.81 1.4 1.3 0.70 0.67
3 × 3 3.00 3.00 5.10 2.00 39.47 1.6 2.2 14.27 5.57 2.73 2.67 2.70 1.56 58.02 1.8 1.4 7.53 3.11
5 × 5 4.70 5.00 10.30 2.48 24.10 2.5 2.3 839.20 180.29 4.90 4.87 6.10 2.83 46.45 2.6 2.5 269.11 57.44
7 × 7 7.00 7.00 24.21 8.12 33.54 3.1 3.5 17,402.43 2411.23 7.00 6.80 10.37 5.48 52.84 3.3 3.9 6352.17 402.88

d = 0.75 d = 1.00
2 × 2 1.60 1.60 1.47 1.20 81.82 1.0 1.2 0.60 0.35 1.60 1.57 1.33 1.33 100.0 1.6 1.5 0.80 0.43
3 × 3 2.60 2.27 1.93 1.63 84.48 1.7 1.6 5.00 1.77 2.40 2.47 1.77 1.67 94.34 1.9 1.6 5.57 1.28
5 × 5 4.63 4.63 3.47 2.63 75.96 2.4 2.1 237.91 22.25 4.60 4.60 2.43 2.37 97.26 3.5 3.1 236.43 10.42
7 × 7 6.77 6.65 4.46 4.38 97.77 3.8 3.6 4,435.92 83.10 6.63 6.96 4.86 4.82 99.07 3.9 3.7 5106.45 88.33

1
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6 Conclusion

The book of Pardalos, Migdalas and Pitsoulis, “Pareto Optimality, Game Theory and Equilibria” [16], surveys
recent developments and numerous applications of game theory and equilibrium programming in economics
and engineering applications. In this paper, we used maximal cliques enumeration to find all maximal Nash
subsets corresponding to a bimatrix game. We used dimension relation defined for maximal Nash and Selten
subsets to implement an automatic procedure to compute their dimensions. We presented a linear programming
approach to identify extreme perfect Nash equilibria, enumerate all Selten maximal subsets and compute their
dimensions. Based on this linear formulation, we proposed the Eχ -MIPerfect and the EEE-Perfect algorithms
which enumerate all extreme perfect Nash equilibria. The implementations of these algorithms allowed us to
generate experimental results on bimatrix games with different size and density. These results show that the
probability of meeting a perfect equilibrium profile increases with an increase in the bimatrix game’s density.

Acknowledgments This research was partially done during a stay of the first author at GERAD research center, Groupe d’Études
et Recherche en Analyse des Décisions, Montréal, Canada. Work of the first author was partially supported by KFUPM, Deanship
of Scientific Research under grant IN101038. This support is gratefully acknowledged.

Conflict of interest The authors declare that there is no conflict of interest regarding the publication of this article.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use,
distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

1. Audet, C.; Hansen, P.; Jaumard, B.; Savard, G.: Enumeration of all extreme equilibrium strategies of bimatrix games. SIAM
J. Sci. Comput. 23(1), 323–338 (2001)

2. Audet, C.; Belhaiza, S.; Hansen, P.: Enumeration of all extreme equilibria in game theory: bimatrix and polymatrix games.
J. Optim. Theory Appl. 129(3), 349–372 (2006)

3. Audet, C.; Belhaiza, S.; Hansen, P.: A new sequence form approach for the enumeration and refinement of all extreme Nash
equilibria for extensive form games. Int. Game Theory Rev. 11(4), 437–451 (2009)

4. Avis, D.; Rosenberg, G.D.; Savani, R.; von Stengel, B.: Enumeration of Nash equilibria for two-player games. Econ. Theory
42, 9–37 (2010)

5. Belhaiza, S.; Audet, C.; Hansen, P.: On proper refinement of Nash equilibria for bimatrix games. Automatica, 48, 297–303
(2012)

6. Borm, P.E.M.; Jansen, M.J.M, Potters, J.A.M.; Tijs, S.H.: On the structure of the set of perfect equilibria in bimatrix games.
O-R Spektrum 15, 17–20 (1993)

7. Bron, C.; Kerbosch, J.: Algorithm 457: finding all cliques of an undirected graph. Commun. ACM 16(9), 575–579 (1973)
8. Heuer, G.A.; Millham, C.B.: On Nash subsets ad mobility chains in bimatrix games. Naval Search Logist. Q. 23, 311–319

(1976)
9. Jansen, M.J.M.: Maximal Nash subsets for bimatrix games. Naval Search Logist. Q. 28(1), 147–152 (1981)

10. Mangasarian, O.L.: Equilibrium points of bimatrix games. J. Soc. Ind. Appl. Math. 12, 778–780 (1964)
11. Mangasarian, O.L.; Stone, H.: Two person nonzero-sum games and quadratic programming. J. Math. Anal. Appl. 9, 348–355

(1964)
12. Millham, C.B.: On Nash subsets of bimatrix games. Naval Res. Logist. Q. 74, 307–317 (1974)
13. Mills, H.: Equilibrium points in finite games. J. Soc. Ind. Appl. Math. 8, 397–402 (1960)
14. Myerson, R.B.: Game Theory: Analysis of Conflict. Harvard University Press, Cambridge, London (1997)
15. Nash, J.F.: Equilibrium points in n-person games. Proc. Natl. Acad. Sci. 36, 48–49 (1950)
16. Pardalos, P.M.; Migdalas, A.; Pitsoulis, L.: Pareto Optimality, Game Theory and Equilibria. Springer Optimization and Its

Applications, vol. 17 (2008)
17. Selten, R.: Reexamination of the perfectness concept for equilibrium points in extensive games. Int. J. Game Theory 4,

25–55 (1975)
18. van Damme, E.E.C.: Refinements of the Nash Equilibrium Concept, Lecture Notes in Economics and Mathematical Systems

vol. 219. Springer, Berlin Heidelberg, New York (1983)
19. Von Stengel. B.; Van Den Elzen, A.; Talman, D.: Computing normal form perfect equilibria for extensive two-person games.

Econometrica, 70, 693–715 (2002)
20. Vorob’ev, N.N.: Equilibrium points in bimatrix games. Theoriya Veroyatnostej i ee Primwneniya, 3, 297–309 (1958). [English

version: Theory of Probability and its Applications, 3, 297–309 (1958)]

123


	2014_Belhaiza_Note_bimatrix_game_maximal_Selten_article

