Hossein Abbasi, Naser Ezzati-Jivan, Martine Bellaïche, Chamseddine Talhi et Michel Dagenais
Article de revue (2019)
Document en libre accès dans PolyPublie |
|
Libre accès au plein texte de ce document Version finale avant publication Conditions d'utilisation: Tous droits réservés Télécharger (294kB) |
Abstract
One of the most important benefits of using cloud computing is the benefit of on-demand services. Accordingly, the method of payment in the cloud environment is pay per use. This feature results in a new kind of DDOS attack called Economic Denial of Sustainability (EDoS), in which the customer pays extra to the cloud provider as a result of the attack. Similar to other DDoS attacks, EDoS attacks are divided into different types, such as (1) bandwidth-consuming attacks, (2) attacks that target specific applications, and 3) connection-layer exhaustion attacks. In this work, we propose a novel framework to detect different types of EDoS attacks by designing a profile that learns from and classifies the normal and abnormal behaviors. In this framework, the extra demanding resources are only allocated to VMs that are detected to be in a normal situation and therefore prevent the cloud environment from attack and resource misuse propagation.
Mots clés
DDoS attacks; EDoS attacks; cloud computing; machine-learning; detection
Sujet(s): |
2700 Technologie de l'information > 2706 Génie logiciel 2700 Technologie de l'information > 2715 Optimisation 2800 Intelligence artificielle > 2805 Théories de l'apprentissage et de l'inférence |
---|---|
Département: | Département de génie informatique et génie logiciel |
Organismes subventionnaires: | CRSNG/NSERC |
Numéro de subvention: | CRDPJ507883-16 |
URL de PolyPublie: | https://publications.polymtl.ca/4211/ |
Titre de la revue: | Journal of Hardware and Systems Security (vol. 3, no 2) |
Maison d'édition: | Springer |
DOI: | 10.1007/s41635-018-0061-2 |
URL officielle: | https://doi.org/10.1007/s41635-018-0061-2 |
Date du dépôt: | 02 mars 2020 13:17 |
Dernière modification: | 27 sept. 2024 11:38 |
Citer en APA 7: | Abbasi, H., Ezzati-Jivan, N., Bellaïche, M., Talhi, C., & Dagenais, M. (2019). Machine learning-based EDoS attack detection technique using execution trace analysis. Journal of Hardware and Systems Security, 3(2), 164-176. https://doi.org/10.1007/s41635-018-0061-2 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions