<  Retour au portail Polytechnique Montréal

Génération de stimuli efficaces en énergie pour la microstimulation électrique intracorticale

Sébastien Ethier

Mémoire de maîtrise (2010)

[img]
Affichage préliminaire
Télécharger (15MB)
Citer ce document: Ethier, S. (2010). Génération de stimuli efficaces en énergie pour la microstimulation électrique intracorticale (Mémoire de maîtrise, École Polytechnique de Montréal). Tiré de https://publications.polymtl.ca/352/
Afficher le résumé Cacher le résumé

Résumé

RÉSUMÉ Ce mémoire a comme objectif principal la mise en oeuvre de circuits dédiés à l’amélioration de l’efficacité de la stimulation électrique de tissus situés au niveau du cortex visuel primaire. Le stimulateur proposé permet la génération de nouveaux stimuli flexibles de forme exponentielle et demi-sinusoïdale dans l’optique de réduire la consommation de puissance globale de l’implant. En plus d’être potentiellement plus efficaces que les stimulations rectangulaires standard pour exciter les tissus, ces formes d’impulsions permettraient également de réduire la concentration d’ions toxiques relâchés par les électrodes. Le second objectif de ce projet est de permettre la stimulation à pleine échelle, soit au moins 150 µA, à travers l’interface microélectrode-tissus qui est caractérisée par une impédance élevée. Un étage de sortie à haute-tension a donc également été réalisé afin de générer des tensions d’alimentation d’environ ±9 V et d’augmenter ainsi l’excursion de tension des stimuli tout en étant entièrement intégré. Une architecture comportant deux circuits intégrés indépendants est proposée dans ce mémoire. Le générateur de stimuli est implémenté dans la technologie CMOS 0,18-µ m 1,8V/3,3V de TSMC afin de limiter sa consommation de puissance. Pour ce qui est de l’étage de sortie, il est intégré à l’aide du procédé C08E CMOS/DMOS 0,8-µ m 5V/20V de DALSA Semiconductors, technologie supportant les niveaux de tension requis.Les deux puces ainsi fabriquées ont été testées. L’intensité des stimuli rectangulaires couvre une plage de 1,6 à 167,2 µ A des erreurs de non-linéarité différentielle et intégrale de 0,10 et 0,16 LSB respectivement. Les impulsions exponentielles ont une plage dynamique de 34,36 dB pour une erreur de ±0,5 dB par rapport à la fonction théorique. La consommation de puissance du générateur de stimuli atteint en moyenne 29,1 µW en mode rectangulaire et de 28,5 à 88,3 µ W en mode exponentiel. Les résultats obtenus pour la demi-sinusoïde proviennent de simulations. En moyenne, 80,2 % de la durée des impulsions demi-sinusoïdales a une erreur inférieure à ±1 % par rapport à la fonction idéale. Le générateur de stimuli complet consomme de 46,7 à 199,1 µW en mode demi-sinusoïdal. En ce qui a trait à l’étage de sortie, des tensions de 8,95 et -8,46 V sont générées avec succès, permettant à l’excursion de tension d’atteindre 13,6 V à travers une charge de 100 kΩ.----------ABSTRACT This master thesis’ main objective is the implementation of circuits dedicated to electrical stimulation efficiency enhancement for tissues in the primary visual cortex. The proposed stimulator allows novel stimuli waveform generation such as flexible exponential and half-sine pulses in order to reduce the implant’s global power consumption. In addition of being potentially more efficient to excite neural tissues than standard rectangular pulse-based stimulations, these waveforms should also reduce toxic ions concentration released by the electrodes. Moreover, this project’s second objective is to allow full-scale stimulation, i.e., at least 150 µA, through high-impedance microelectrode-tissue interfaces. A high-voltage output stage has also been realized to generate ±9 V voltage supplies to increase the voltage swing while being fully-integrated. An architecture composed of two independent integrated circuits has been proposed. The stimuli generator is implemented in TSMC CMOS 0.18-µ m 1.8V/3.3V technology to limit its power consumption. On the other hand, the output stage is integrated in C08E CMOS/DMOS 0.8- µm 5V/20V process from DALSA Semiconductors as this technology supports the required voltage levels.These two fabricated chips were tested. Rectangular stimuli intensity varies from 1.6 to 167.2 µA with differential and integral nonlinearities of 0.10 and 0.16 LSB, respectively. Exponential pulses show a dynamic range of 34.36 dB for an error of ±0.5 dB with the theoretical waveform. The stimuli generator’s power consumption reaches an average of 29.1 µW in rectangular mode and from 28.5 to 88.3 µW in exponential mode. Half-sine results are obtained from simulations. An average of 80.2 % of half-sine pulse duration has an error lower than ±1 % with the ideal sine function. The whole stimuli generator consumes from 46.7 to 199.1 µW in half-sine mode. For the output stage, voltages of 8.95 and -8.46 V are successfully generated, allowing the output voltage compliance to reach 13.6 V through a 100 kΩ load. However, this chip dissipates 51.37 mW when operating normally.

Document en libre accès dans PolyPublie
Département: Département de génie électrique
Directeur de mémoire/thèse: Mohamad Sawan
Date du dépôt: 29 nov. 2010 14:14
Dernière modification: 24 oct. 2018 16:10
Adresse URL de PolyPublie: https://publications.polymtl.ca/352/

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Actions réservées au personnel