Article de revue (2015)
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (3MB) |
Abstract
This paper addresses the set-point control problem of a one-dimensional heat equation with in-domain actuation. The proposed scheme is based on the framework of zero-dynamics inverse combined with flat system control. Moreover, the set-point control is cast into a motion planning problem of a multiple-input, multiple-output system, which is solved by a Green's function-based reference trajectory decomposition. The validity of the proposed method is assessed through the analysis of the invertibility of the map generated by Green's function and the convergence of the regulation error. The performance of the developed control scheme and the viability of the proposed approach are confirmed by numerical simulation of a representative system.
Mots clés
Mathematics - Optimization and Control; Computer Science - Systems and Control
Sujet(s): | 2500 Génie électrique et électronique > 2500 Génie électrique et électronique |
---|---|
Département: | Département de génie électrique |
Organismes subventionnaires: | CRSNG / NSERC, Fundamental Research Funds for the Central Universities |
Numéro de subvention: | 682014CX002EM |
URL de PolyPublie: | https://publications.polymtl.ca/3478/ |
Titre de la revue: | Mathematical Problems in Engineering (vol. 2015) |
Maison d'édition: | Hindawi Publishing Corporation |
DOI: | 10.1155/2015/187284 |
URL officielle: | https://doi.org/10.1155/2015/187284 |
Date du dépôt: | 06 nov. 2018 13:55 |
Dernière modification: | 28 sept. 2024 08:21 |
Citer en APA 7: | Zheng, J., & Zhu, G. (2015). In-Domain Control of a Heat Equation: An Approach Combining Zero-Dynamics Inverse and Differential Flatness. Mathematical Problems in Engineering, 2015, 1-10. https://doi.org/10.1155/2015/187284 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année

Provenance des téléchargements

Dimensions