<  Retour au portail Polytechnique Montréal

Low overhead hardware-assisted virtual machine analysis and profiling

Suchakrapani Datt Sharma, Geneviève Bastien, Hani Nemati et Michel Dagenais

Communication écrite (2016)

Document en libre accès dans PolyPublie
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version finale avant publication
Conditions d'utilisation: Tous droits réservés
Télécharger (236kB)
Afficher le résumé
Cacher le résumé

Abstract

Cloud infrastructure providers need reliable performance analysis tools for their nodes. Moreover, the analysis of Virtual Machines (VMs) is a major requirement in quantifying cloud performance. However, root cause analysis, in case of unexpected crashes or anomalous behavior in VMs, remains a major challenge. Modern tracing tools such as LTTng allow fine grained analysis - albeit at a minimal execution overhead,and being OS dependent. In this paper, we propose HAVAna,a hardware-assisted VM analysis algorithm that gathers and analyzes pure hardware trace data, without any dependence on the underlying OS or performance analysis infrastructure. Our approach is totally non-intrusive and does not require any performance statistics, trace or log gathering from the VM. We used the recently introduced Intel PT ISA extensions on modern Intel Skylake processors to demonstrate its efficiency and observed that, in our experimental scenarios, it leads to a tiny overhead of up to 1%, as compared to 3.6-28.7% for similar VM trace analysis done with software-only schemes such as LTTng. Our proposed VM trace analysis algorithm has also been opensourced for further enhancements and to the benefit of other developers. Furthermore, we developed interactive Resource and Process Control Flow visualization tools to analyze the hardware trace data and present a real-life usecase in the paper that allowed us to see unexpected resource consumption by VMs.

Mots clés

Virtualization; Hardware Tracing; Intel PT; Trace Analysis; VM Analysis

Sujet(s): 2700 Technologie de l'information > 2700 Technologie de l'information
2700 Technologie de l'information > 2715 Optimisation
Département: Département de génie informatique et génie logiciel
Organismes subventionnaires: CRSNG/NSERC
Numéro de subvention: CRDPJ468687-14
URL de PolyPublie: https://publications.polymtl.ca/2975/
Nom de la conférence: 2016 IEEE Globecom Workshops (GC Wkshps)
Lieu de la conférence: Washington, DC, USA
Date(s) de la conférence: 2016-12-04 - 2016-12-08
Maison d'édition: IEEE
DOI: 10.1109/glocomw.2016.7848953
URL officielle: https://doi.org/10.1109/glocomw.2016.7848953
Date du dépôt: 12 févr. 2018 16:31
Dernière modification: 26 sept. 2024 21:42
Citer en APA 7: Sharma, S. D., Bastien, G., Nemati, H., & Dagenais, M. (décembre 2016). Low overhead hardware-assisted virtual machine analysis and profiling [Communication écrite]. 2016 IEEE Globecom Workshops (GC Wkshps), Washington, DC, USA (6 pages). https://doi.org/10.1109/glocomw.2016.7848953

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document