<  Back to the Polytechnique Montréal portal

Segmentation and Characterization of Small Retinal Vessels in Fundus Images Using the Tensor Voting Approach

Argyrios Christodoulidis

Ph.D. thesis (2017)

Open Access document in PolyPublie
[img]
Preview
Open Access to the full text of this document
Terms of Use: All rights reserved
Download (38MB)
Show abstract
Hide abstract

Abstract

As an easily accessible site for the direct observation of the circulation system, human retina
can offer a unique insight into diseases development or outcome. Retinal vessels are repre-
sentative of the general condition of the whole systematic circulation, and thus can act as
a "window" to the status of the vascular network in the whole body. Each complication on
the retina can have an adverse impact on the patient's sight. In this direction, small vessels'
relevance is very high as they are among the first anatomical structures that get affected
as diseases progress. Moreover, changes in the small vessels' state, appearance, morphology,
functionality, or even growth indicate the severity of the diseases.
This thesis will focus on the retinal lesions due to diabetes, a serious metabolic disease
affecting millions of people around the world. This disorder disturbs the natural blood glucose
levels causing various pathophysiological changes in different systems across the human body.
Diabetic retinopathy is the medical term that describes the condition when the fundus and
the retinal vessels are affected by diabetes. As in other diseases, small vessels play a crucial
role in the onset, the development, and the outcome of the retinopathy. More importantly,
at the latest stage, new small vessels, or neovascularizations, growth constitutes a factor of
significant risk for blindness. Therefore, there is a need to detect all the changes that occur
in the small retinal vessels with the aim of characterizing the vessels to healthy or abnormal.
The characterization, in turn, can facilitate the detection of a specific retinopathy locally,
like the sight-threatening proliferative diabetic retinopathy.
Segmentation techniques can automatically isolate important anatomical structures like
the vessels, and provide this information to the physician to assist him in the final decision. In
comprehensive systems for the automatization of DR detection, small vessels role is significant
as missing them early in a CAD pipeline might lead to an increase in the false positive rate
of red lesions in subsequent steps. So far, the efforts have been concentrated mostly on the
accurate localization of the medium range vessels. In contrast, the existing models are weak
in case of the small vessels. The required generalization to adapt an existing model does not
allow the approaches to be flexible, yet robust to compensate for the increased variability in
the appearance as well as the interference with the background. So far, the current template
models (matched filtering, line detection, and morphological processing) assume a general
shape for the vessels that is not enough to approximate the narrow, curved, characteristics
of the small vessels. Additionally, due to the weak contrast in the small vessel regions,
the current segmentation and the tracking methods produce fragmented or discontinued
results. Alternatively, the small vessel segmentation can be accomplished at the expense of
x
background noise magnification, in the case of using thresholding or the image derivatives
methods. Furthermore, the proposed deformable models are not able to propagate a contour
to the full extent of the vasculature in order to enclose all the small vessels. The deformable
model external forces are ineffective to compensate for the low contrast, the low width, the
high variability in the small vessel appearance, as well as the discontinuities. Internal forces,
also, are not able to impose a global shape constraint to the contour that could be able to
approximate the variability in the appearance of the vasculature in different categories of
vessels. Finally, machine learning approaches require the training of a classifier on a labelled
set. Those sets are difficult to be obtained, especially in the case of the smallest vessels. In
the case of the unsupervised methods, the user has to predefine the number of clusters and
perform an effective initialization of the cluster centers in order to converge to the global
minimum.
This dissertation expanded the previous research work and provides a new segmentation
method for the smallest retinal vessels. Multi-scale line detection (MSLD) is a recent method
that demonstrates good segmentation performance in the retinal images, while tensor voting
is a method first proposed for reconnecting pixels. For the first time, we combined the
line detection with the tensor voting framework. The application of the line detectors has
been proved an effective way to segment medium-sized vessels. Additionally, perceptual
organization approaches like tensor voting, demonstrate increased robustness by combining
information coming from the neighborhood in a hierarchical way. Tensor voting is closer than
standard models to the way human perception functions. As we show, it is a more powerful
tool to segment small vessels than the existing methods. This specific combination allows us
to overcome the apparent fragmentation challenge of the template methods at the smallest
vessels. Moreover, we thresholded the line detection response adaptively to compensate for
non-uniform images. We also combined the two individual methods in a multi-scale scheme
in order to reconnect vessels at variable distances. Finally, we reconstructed the vessels
from their extracted centerlines based on pixel painting as complete geometric information
is required to be able to utilize the segmentation in a CAD system.
The segmentation was validated on a high-resolution fundus image database that in-
cludes diabetic retinopathy images of varying stages, using standard discrepancy as well as
perceptual-based measures. When only the smallest vessels are considered, the improve-
ments in the sensitivity rate for the database against the standard multi-scale line detection
method is 6.47%. For the perceptual-based measure, the improvement is 7.8% against the
basic method.
The second objective of the thesis was to implement a method for the characterization of
isolated retinal areas into healthy or abnormal cases. Some of the original images, from which
xi
these patches are extracted, contain neovascularizations. Investigation of image features
for the vessels characterization to healthy or abnormal constitutes an essential step in the
direction of developing CAD system for the automatization of DR screening. Given that the
amount of data will significantly increase under CAD systems, the focus on this category of
vessels can facilitate the referral of sight-threatening cases to early treatment. In addition
to the challenges that small healthy vessels pose, neovessels demonstrate an even higher
degree of complexity as they form networks of convolved, twisted, looped thin vessels. The
existing work is limited to the use of first-order characteristics extracted from the small
segmented vessels that limits the study of patterns. Our contribution is in using the tensor
voting framework to isolate the retinal vascular junctions and in turn using those junctions
as points of interests. Second, we exploited second-order statistics computed on the junction
spatial distribution to characterize the vessels as healthy or neovascularizations. In fact, the
second-order spatial statistics extracted from the junction distribution are combined with
widely used features to improve the characterization sensitivity by 9.09% over the state of
art.
The developed method proved effective for the segmentation of the retinal vessels. Higher
order tensors along with the implementation of tensor voting via steerable filtering could
be employed to further reduce the execution time, and resolve the challenges at vascular
junctions. Moreover, the characterization could be advanced to the detection of prolifera-
tive retinopathy by extending the supervised learning to include non-proliferative diabetic
retinopathy cases or other pathologies. Ultimately, the incorporation of the methods into
CAD systems could facilitate screening for the effective reduction of the vision-threatening
diabetic retinopathy rates, or the early detection of other than ocular pathologies.

Résumé

La rétine permet de visualiser facilement une partie du réseau vasculaire humain. Elle offre
ainsi un aperçu direct sur le développement et le résultat de certaines maladies liées au réseau
vasculaire dans son entier. Chaque complication visible sur la rétine peut avoir un impact sur
la capacité visuelle du patient. Les plus petits vaisseaux sanguins sont parmi les premières
structures anatomiques affectées par la progression d'une maladie, être capable de les analyser
est donc crucial. Les changements dans l'état, l'aspect, la morphologie, la fonctionnalité, ou
même la croissance des petits vaisseaux indiquent la gravité des maladies.
Le diabète est une maladie métabolique qui affecte des millions de personnes autour
du monde. Cette maladie affecte le taux de glucose dans le sang et cause des changements
pathologiques dans différents organes du corps humain. La rétinopathie diabétique décrit l'en-
semble des conditions et conséquences du diabète au niveau de la rétine. Les petits vaisseaux
jouent un rôle dans le déclenchement, le développement et les conséquences de la rétinopa-
thie. Dans les dernières étapes de cette maladie, la croissance des nouveaux petits vaisseaux,
appelée néovascularisation, présente un risque important de provoquer la cécité. Il est donc
crucial de détecter tous les changements qui ont lieu dans les petits vaisseaux de la rétine
dans le but de caractériser les vaisseaux sains et les vaisseaux anormaux. La caractérisation
en elle-même peut faciliter la détection locale d'une rétinopathie spécifique.
La segmentation automatique des structures anatomiques comme le réseau vasculaire est
une étape cruciale. Ces informations peuvent être fournies à un médecin pour qu'elles soient
considérées lors de son diagnostic. Dans les systèmes automatiques d'aide au diagnostic, le
rôle des petits vaisseaux est significatif. Ne pas réussir à les détecter automatiquement peut
conduire à une sur-segmentation du taux de faux positifs des lésions rouges dans les étapes
ultérieures. Les efforts de recherche se sont concentrés jusqu'à présent sur la localisation
précise des vaisseaux de taille moyenne. Les modèles existants ont beaucoup plus de difficultés
à extraire les petits vaisseaux sanguins. Les modèles existants ne sont pas robustes à la grande
variance d'apparence des vaisseaux ainsi qu'à l'interférence avec l'arrière-plan. Les modèles de
la littérature existante supposent une forme générale qui n'est pas suffisante pour s'adapter
à la largeur étroite et la courbure qui caractérisent les petits vaisseaux sanguins. De plus, le
contraste avec l'arrière-plan dans les régions des petits vaisseaux est très faible. Les méthodes
de segmentation ou de suivi produisent des résultats fragmentés ou discontinus. Par ailleurs,
la segmentation des petits vaisseaux est généralement faite aux dépends de l'amplification
du bruit. Les modèles déformables sont inadéquats pour segmenter les petits vaisseaux. Les
forces utilisées ne sont pas assez flexibles pour compenser le faible contraste, la largeur, et
vii
la variance des vaisseaux. Enfin, les approches de type apprentissage machine nécessitent un
entraînement avec une base de données étiquetée. Il est très difficile d'obtenir ces bases de
données dans le cas des petits vaisseaux.
Cette thèse étend les travaux de recherche antérieurs en fournissant une nouvelle mé-
thode de segmentation des petits vaisseaux rétiniens. La détection de ligne à échelles multiples
(MSLD) est une méthode récente qui démontre une bonne performance de segmentation dans
les images de la rétine, tandis que le vote tensoriel est une méthode proposée pour reconnecter
les pixels. Une approche combinant un algorithme de détection de ligne et de vote tensoriel est
proposée. L'application des détecteurs de lignes a prouvé son efficacité à segmenter les vais-
seaux de tailles moyennes. De plus, les approches d'organisation perceptuelle comme le vote
tensoriel ont démontré une meilleure robustesse en combinant les informations voisines d'une
manière hiérarchique. La méthode de vote tensoriel est plus proche de la perception humain
que d'autres modèles standards. Comme démontré dans ce manuscrit, c'est un outil pour
segmenter les petits vaisseaux plus puissant que les méthodes existantes. Cette combinaison
spécifique nous permet de surmonter les défis de fragmentation éprouvés par les méthodes de
type modèle déformable au niveau des petits vaisseaux. Nous proposons également d'utiliser
un seuil adaptatif sur la réponse de l'algorithme de détection de ligne pour être plus robuste
aux images non-uniformes. Nous illustrons également comment une combinaison des deux
méthodes individuelles, à plusieurs échelles, est capable de reconnecter les vaisseaux sur des
distances variables. Un algorithme de reconstruction des vaisseaux est également proposé.
Cette dernière étape est nécessaire car l'information géométrique complète est requise pour
pouvoir utiliser la segmentation dans un système d'aide au diagnostic.
La segmentation a été validée sur une base de données d'images de fond d'oeil à haute
résolution. Cette base contient des images manifestant une rétinopathie diabétique. La seg-
mentation emploie des mesures de désaccord standards et aussi des mesures basées sur la
perception. En considérant juste les petits vaisseaux dans les images de la base de données,
l'amélioration dans le taux de sensibilité que notre méthode apporte par rapport à la méthode
standard de détection multi-niveaux de lignes est de 6.47%. En utilisant les mesures basées
sur la perception, l'amélioration est de 7.8%.
Dans une seconde partie du manuscrit, nous proposons également une méthode pour
caractériser les rétines saines ou anormales. Certaines images contiennent de la néovascula-
risation. La caractérisation des vaisseaux en bonne santé ou anormale constitue une étape
essentielle pour le développement d'un système d'aide au diagnostic. En plus des défis que
posent les petits vaisseaux sains, les néovaisseaux démontrent eux un degré de complexité
encore plus élevé. Ceux-ci forment en effet des réseaux de vaisseaux à la morphologie com-
plexe et inhabituelle, souvent minces et à fortes courbures. Les travaux existants se limitent
viii
à l'utilisation de caractéristiques de premier ordre extraites des petits vaisseaux segmentés.
Notre contribution est d'utiliser le vote tensoriel pour isoler les jonctions vasculaires et d'uti-
liser ces jonctions comme points d'intérêts. Nous utilisons ensuite une statistique spatiale
de second ordre calculée sur les jonctions pour caractériser les vaisseaux comme étant sains
ou pathologiques. Notre méthode améliore la sensibilité de la caractérisation de 9.09% par
rapport à une méthode de l'état de l'art.
La méthode développée s'est révélée efficace pour la segmentation des vaisseaux réti-
niens. Des tenseurs d'ordre supérieur ainsi que la mise en œuvre d'un vote par tenseur via
un filtrage orientable pourraient être étudiés pour réduire davantage le temps d'exécution et
résoudre les défis encore présents au niveau des jonctions vasculaires. De plus, la caractéri-
sation pourrait être améliorée pour la détection de la rétinopathie proliférative en utilisant
un apprentissage supervisé incluant des cas de rétinopathie diabétique non proliférative ou
d'autres pathologies. Finalement, l'incorporation des méthodes proposées dans des systèmes
d'aide au diagnostic pourrait favoriser le dépistage régulier pour une détection précoce des
rétinopathies et d'autres pathologies oculaires dans le but de réduire la cessité au sein de la
population.

Department: Department of Computer Engineering and Software Engineering
Program: Génie informatique
Academic/Research Directors: Farida Cheriet, Thomas Hurtut
PolyPublie URL: https://publications.polymtl.ca/2578/
Institution: École Polytechnique de Montréal
Date Deposited: 30 Oct 2017 15:40
Last Modified: 23 Apr 2023 18:46
Cite in APA 7: Christodoulidis, A. (2017). Segmentation and Characterization of Small Retinal Vessels in Fundus Images Using the Tensor Voting Approach [Ph.D. thesis, École Polytechnique de Montréal]. PolyPublie. https://publications.polymtl.ca/2578/

Statistics

Total downloads

Downloads per month in the last year

Origin of downloads

Repository Staff Only

View Item View Item