![]() | Up a level |
Christodoulidis, A. (2017). Segmentation and Characterization of Small Retinal Vessels in Fundus Images Using the Tensor Voting Approach [Ph.D. thesis, École Polytechnique de Montréal]. Available
Christodoulidis, A., Hurtut, T., Tahar, H. B., & Cheriet, F. (2016). A multi-scale tensor voting approach for small retinal vessel segmentation in high resolution fundus images. Computerized Medical Imaging and Graphics, 52, 28-43. External link
Khomri, B., Christodoulidis, A., Djerou, L., Babahenini, M. C., & Cheriet, F. (2018). Particle swarm optimization method for small retinal vessels detection on multiresolution fundus images. Journal of Biomedical Optics, 23(5), 13 pages. External link
Khomri, B., Christodoulidis, A., Djerou, L., Babahenini, M. C., & Cheriet, F. (2018). Retinal blood vessel segmentation using the elite-guided multi-objective artificial bee colony algorithm. IET Image Processing, 12(12), 2163-2171. External link
Khomri, B., Christodoulidis, A., Djerou, L., Babahenini, M. C., & Cheriet, F. (2017, July). Particle swarm optimization approach for the segmentation of retinal vessels from fundus images [Paper]. 14th International Conference on Image Analysis and Recognition (ICIAR 2017), Montréal, Québec. External link