<  Retour au portail Polytechnique Montréal

Multilevel Modeling, Formal Analysis, and Characterization of Single Event Transients Propagation in Digital Systems

Ghaith Bany Hamad

Thèse de doctorat (2017)

Document en libre accès dans PolyPublie
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Conditions d'utilisation: Tous droits réservés
Télécharger (4MB)
Afficher le résumé
Cacher le résumé

Résumé

La croissance exponentielle du nombre de transistors par puce a apporté des progrès considérables aux performances et fonctionnalités des dispositifs semi-conducteurs avec une miniaturisation des dimensions physiques ainsi qu'une augmentation de vitesse. De nos jours, les appareils électroniques utilisés dans un large éventail d'applications telles que les systèmes de divertissement personnels, l'industrie automobile, les systèmes électroniques médicaux, et le secteur financier ont changé notre façon de vivre. Cependant, des études récentes ont démontré que le rétrécissement permanent de la taille des transistors qui s'approchent des dimensions nanométriques fait surgir des défis majeurs. La réduction de la fiabilité au sens large (c.-à-d., la capacité à fournir la fonction attendue) est l'un d'entre eux. Lorsqu'un système est conçu avec une technologie avancée, on s'attend à ce qu' il connaît plus de défaillances dans sa durée de vie. De telles défaillances peuvent avoir des conséquences graves allant des pertes financières aux pertes humaines. Les erreurs douces induites par la radiation, qui sont apparues d'abord comme une source de panne plutôt exotique causant des anomalies dans les satellites, sont devenues l'un des problèmes les plus difficiles qui influencent la fiabilité des systèmes microélectroniques modernes, y compris les dispositifs terrestres. Dans le secteur médical par exemple, les erreurs douces ont été responsables de l'échec et du rappel de plusieurs stimulateurs cardiaques implantables. En fonction du transistor affecté lors de la fabrication, le passage d'une particule peut induire des perturbations isolées qui se manifestent comme un basculement du contenu d'une cellule de mémoire (c.-à-d., Single Event Upsets (SEU)) ou un changement temporaire de la sortie (sous forme de bruit) dans la logique combinatoire (c.-à-d., Single Event Transients (SETs)). Les SEU ont été largement étudiés au cours des trois dernières décennies, car ils étaient considérés comme la cause principale des erreurs douces. Néanmoins, des études expérimentales ont montré qu'avec plus de miniaturisation technologique, la contribution des SET au taux d'erreurs douces est remarquable et qu'elle peut même dépasser celui des SEU dans les systèmes à haute fréquence [1], [2]. Afin de minimiser l'impact des erreurs douces, l'effet des SET doit être modélisé, prédit et atténué. Toutefois, malgré les progrès considérables accomplis dans la vérification fonctionnelle des circuits numériques, il y a eu très peu de progrès en matiàre de vérification non-fonctionnelle (par exemple, l'analyse des erreurs douces). Ceci est dû au fait que la modélisation et l'analyse des propriétés non-fonctionnelles des SET pose un grand défi. Cela est lié à la nature aléatoire des défauts et à la difficulté de modéliser la variation de leurs caractéristiques lorsqu'ils se propagent.

Abstract

The exponential growth in the number of transistors per chip brought tremendous progress in the performance and the functionality of semiconductor devices associated with reduced physical dimensions and higher speed. Electronic devices used in a wide range of applications such as personal entertainment systems, automotive industry, medical electronic systems, and financial sector changed the way we live nowadays. However, recent studies reveal that further downscaling of the transistor size at nano-scale technology leads to major challenges. Reliability (i.e., ability to provide intended functionality) is one of them, where a system designed in nano-scale nodes is expected to experience more failures in its lifetime than if it was designed using larger technology node size. Such failures can lead to serious conséquences ranging from financial losses to even loss of human life. Soft errors induced by radiation, which were initially considered as a rather exotic failure mechanism causing anomalies in satellites, have become one of the most challenging issues that impact the reliability of modern microelectronic systems, including devices at terrestrial altitudes. For instance, in the medical industry, soft errors have been responsible of the failure and recall of many implantable cardiac pacemakers. Depending on the affected transistor in the design, a particle strike can manifest as a bit flip in a state element (i.e., Single Event Upset (SEU)) or temporally change the output of a combinational gate (i.e., Single Event Transients (SETs)). Initially, SEUs have been widely studied over the last three decades as they were considered to be the main source of soft errors. However, recent experiments show that with further technology downscaling, the contribution of SETs to the overall soft error rate is remarkable and in high frequency systems, it might exceed that of SEUs [1], [2]. In order to minimize the impact of soft errors, the impact of SETs needs to be modeled, predicted, and mitigated. However, despite considerable progress towards developing efficient methodologies for the functional verification of digital designs, advances in non-functional verification (e.g., soft error analysis) have been lagging. This is due to the fact that the modeling and analysis of non-functional properties related to SETs is very challenging. This can be related to the random nature of these faults and the difficulty of modeling the variation in its characteristics while propagating. Moreover, many details about the design structure and the SETs characteristics may not be available at high abstraction levels. Thus, in high level analysis, many assumptions about the SETs behavior are usually made, which impacts the accuracy of the generated results. Consequently, the lowcost detection of soft errors due to SETs is very challenging and requires more sophisticated techniques.

Département: Département de génie électrique
Programme: génie électrique
Directeurs ou directrices: Yvon Savaria et Otmane Ait Mohamed
URL de PolyPublie: https://publications.polymtl.ca/2510/
Université/École: École Polytechnique de Montréal
Date du dépôt: 10 oct. 2018 16:00
Dernière modification: 08 avr. 2024 09:00
Citer en APA 7: Bany Hamad, G. (2017). Multilevel Modeling, Formal Analysis, and Characterization of Single Event Transients Propagation in Digital Systems [Thèse de doctorat, École Polytechnique de Montréal]. PolyPublie. https://publications.polymtl.ca/2510/

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Actions réservées au personnel

Afficher document Afficher document