<  Retour au portail Polytechnique Montréal

Microstructural origins of crushing strength for inherently anisotropic brittle materials

David Cantor, Carlos Ovalle et Émilien Azéma

Article de revue (2022)

Document en libre accès dans PolyPublie
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version finale avant publication
Conditions d'utilisation: Creative Commons: Attribution-Pas d'utilisation commerciale-Pas de modification (CC BY-NC-ND)
Télécharger (5MB)
Afficher le résumé
Cacher le résumé

Abstract

We study the crushing strength of brittle materials whose internal structure (e.g., mineral particles or grains) presents a layered arrangement reminiscent of sedimentary and metamorphic rocks. Taking a discrete-element approach, we probe the failure strength of circular-shaped samples intended to reproduce specific mineral configurations. To do so, assemblies of cells, products of a modified Voronoi tessellation, are joined in mechanically-stable layerings using a bonding law. The cells’ shape distribution allows us to set a level of inherent anisotropy to the material. Using a diametral point loading, and systematically changing the loading orientation with respect to the cells’ configuration, we characterize the failure strength of increasingly anisotropic structures. This approach lets us reproduce experimental observations regarding the shape of the failure strength curve, the Weibull modulus, failure patterns of rocks, and quantify the consumption of the fragmentation energy, and the induced anisotropies linked to the cell’s geometry and force transmission in the samples. Based on a fine description of geometrical and mechanical properties at the onset of failure, we develop a micromechanical breakdown of the crushing strength variability using an analytical decomposition of the stress tensor and the geometrical and force anisotropies. We can conclude that the origins of failure strength in anisotropic layered media rely on compensations of geometrical and mechanical anisotropies, as well as an increasing average radial force between minerals indistinctive of tensile or compressive components.

Mots clés

Fabric, Anisotropy,Failure strength, Weibull statistics, Fragmentation energy, Discrete element method

Sujet(s): 1400 Génie minier et minéral > 1400 Génie minier et minéral
1400 Génie minier et minéral > 1403 Mécanique des roches
Département: Département des génies civil, géologique et des mines
Centre de recherche: IRME - Institut de recherche en mines et environnement UQAT-Polytechnique
Organismes subventionnaires: GRSNG / NSERC, Fonds de recherche du Québec - Nature et technologies (FRQNT), Research Institute on Mines and the Environment (RIME), Canada UQAT-Polytechnique
Numéro de subvention: RGPIN-2019-06118, 2020]-MN-281267
URL de PolyPublie: https://publications.polymtl.ca/10818/
Titre de la revue: International Journal of Solids and Structures (vol. 238)
Maison d'édition: Elsevier
DOI: 10.1016/j.ijsolstr.2021.111399
URL officielle: https://doi.org/10.1016/j.ijsolstr.2021.111399
Date du dépôt: 27 févr. 2023 13:07
Dernière modification: 11 avr. 2024 00:07
Citer en APA 7: Cantor, D., Ovalle, C., & Azéma, É. (2022). Microstructural origins of crushing strength for inherently anisotropic brittle materials. International Journal of Solids and Structures, 238, 111399 (12 pages). https://doi.org/10.1016/j.ijsolstr.2021.111399

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document