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Microstructural origins of crushing strength for
inherently anisotropic brittle materials

David Cantora,b,∗, Carlos Ovallea,b, Emilien Azémac,d

aDepartment of Civil, Geological and Mining Engineering, Polytechnique Montreal,
Montreal, QC, Canada

bResearch Institute of Mining and Environment, RIME UQAT-Polytechnique, Montreal,
QC, Canada

cLMGC, Université de Montpellier, CNRS, Montpellier, France
dInstitut Universitaire de France (IUF), Paris, France

Abstract

We study the crushing strength of brittle materials whose internal structure
(e.g., mineral particles or grains) presents a layered arrangement reminiscent
of sedimentary and metamorphic rocks. Taking a discrete-element approach,
we probe the failure strength of circular-shaped samples intended to repro-
duce specific mineral configurations. To do so, assemblies of cells, products
of a modified Voronoi tessellation, are joined in mechanically-stable layer-
ings using a bonding law. The cells’ shape distribution allows us to set a
level of inherent anisotropy to the material. Using a diametral point loading,
and systematically changing the loading orientation with respect to the cells’
configuration, we characterize the failure strength of increasingly anisotropic
structures. This approach lets us reproduce experimental observations re-
garding the shape of the failure strength curve, the Weibull modulus, failure
patterns of rocks, and quantify the consumption of the fragmentation en-
ergy, and the induced anisotropies linked to the cell’s geometry and force
transmission in the samples. Based on a fine description of geometrical and
mechanical properties at the onset of failure, we develop a micromechanical
breakdown of the crushing strength variability using an analytical decompo-
sition of the stress tensor and the geometrical and force anisotropies. We
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can conclude that the origins of failure strength in anisotropic layered media
rely on compensations of geometrical and mechanical anisotropies, as well as
an increasing average radial force between minerals indistinctive of tensile or
compressive components.

Keywords: fabric, anisotropy, failure strength, Weibull statistics,
fragmentation energy, discrete element method

1. Introduction

The mechanical behavior of many solids can be tracked down to the
level of molecules, defects, and dislocations that may cause stress concen-
trations and yielding of the material. However, the microstructural level
can be equally or more important for characterizing their failure strength.
Imagine, for instance, arrangements produced by the genesis, layering, and
stratification of a solid such as sedimentation, rock metamorphism, or even
crystal growth. In these cases, the mechanical properties are not determined
at the molecular level but instead at the microstructural level [1].

We focus on the failure strength of brittle materials, which may include
rocks, soil grains, ceramics, and even ice. In the case of rock masses and
rock aggregates, for example, it is well known that the mechanical behav-
ior depends on mineralogy and grain characteristics (e.g., size and shape
distribution of minerals), matrix level of cementation, joint characteristics,
and fissuring [2]. Many of these geometrical attributes are also called fabric
or microstructure for geological materials. If any of those fabric properties
present a preferred orientation or organization in space, then the material
can be considered inherently anisotropic. Many studies have focused on the
quantification of the level of inherent fabric anisotropy in rocks or on the
impact of the loading orientation on the ultimate strength of such layered
materials [3, 4, 5, 6, 7, 8, 9, 10, 11].

In experiments, cylindrical cores are often used to characterize the fail-
ure strength of inherently anisotropic rocks under diametrical point loading
(commonly called Brazilian test). In those tests, the orientation θ of the
applied force is gradually varied with respect to the orientation of the inter-
nal layering (see Fig. 1). For such a circular geometry, axial symmetry is
found along the layering orientation; then, the failure strength can be fully
characterized by varying θ in the range [0◦, 90◦]. Note as well that the rock
cores and test configurations are chosen, so the inherently anisotropic con-
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Figure 1: Scheme of a diametrical loading in which the loading orientation varies relative
to the orientation of the internal structure.

figuration is homogeneous as possible along the length of the cylinders (i.e.,
the mineral configuration can be considered transversely isotropic).

For rocks not presenting an inherent anisotropy, the failure strength is
independent of the loading orientation θ. However, for highly layered rocks
such as slate, schist or shale, the failure strength largely varies with θ in
a ‘U ’ shape with minimal strength for an orientation around θ ≃ 25◦, and
increasing strength as θ → 0◦ or 90◦ [5, 12, 8, 13, 14, 11, 15]. As shown
early by Hoek in 1964, the ‘U ’ shape is consistent with Griffith’s theory of
brittle fracture of materials, in which the maximum stress at the tip of the
crack triggers the propagation of a fissure once a critical amount of energy
is added to the system. The rock microstructure is then capable of signing
the failure modes and patterns. This in turn significantly affects the stress-
strain relations at a macroscopic level (i.e., stiffness, hardening/softening,
and strength) [16, 17].

It is important to clearly distinguish between inherent and induced anisotropies.
While the first is defined here as a property of the fabric, the latter refers to
anisotropies arising from that primary structure, such as the joint distribu-
tion in space. Although the anisotropies mentioned up this point are only
related to geometrical properties, they can also arise from the loading config-
uration (i.e., stress-induced anisotropies). Indeed, a detailed description of
both inherent and induced anisotropies are key elements for understanding
the behavior of brittle materials, as we will show in this paper.

Improving our understanding of anisotropic geological materials will help
us better address problems involving rock and grain fragmentation, such as
railway ballast design [18, 19], rockfill dam design [20, 21, 22], rock tunneling
processes [23, 24], mining waste dumps construction [25], surface subsidence
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[26], slip stability analysis of fault gouges [27], filling rock mass discontinu-
ities [28], the geological formation of glacial till [29], confined comminution
[30, 31], weathering and environmental degradation effects [32], the failure
localization in progressively deteriorated disordered structures [33], etc.

In this paper, we use bi-dimensional discrete-element modeling to study
the failure strength of circular samples that have an inherent anisotropic
configuration under varied loading orientation. In Sec. 2, we introduce our
numerical strategy based on the contact dynamics and the bonded-cell meth-
ods, and the sample construction and testing procedures. In Sec. 3, we
characterize the failure strength of two-inherent anisotropic structures show-
ing a good agreement with experimental observations. We then analyze the
failure strength variability in terms of Weibull’s statistics and failure mode
evolution. Section 4 focuses on a fine description of the microstructure in
terms of fabric connectivity, force transmission, and inherent and induced
anisotropies. In Sec. 5, we develop a theoretical analysis that allows us to
discover the microstructural origins of the crushing strength in terms of the
level of inherent anisotropy and loading orientation. This analytical approach
based on the granular stress tensor and its harmonic decomposition linking
microstructure and the macromechanical response. Finally, we conclude with
a summary and perspectives.

2. Numerical modeling

Inherently anisotropic materials are challenging to characterize given the
complex and multiscale properties that minerals, grains, bonds, and fissures
can present in space. Numerical approaches have proven successful at an-
alyzing these materials because they are able to reproduce complex failure
mechanisms under controlled geometries. Some of these approaches use, for
example, finite-elements [34, 35], discrete-element methods with bonded bod-
ies [36, 37, 38, 39, 40, 41], splitting or replacing mechanisms [42, 43, 44, 45],
or coupled discrete-finite element strategies [46, 47, 48, 49, 50].

Among these approaches, the discrete-element method (DEM) has be-
come increasingly popular for dealing with fragmentation due to its versatility
in reproducing grain fissuring, crushing, and many experimental observations
[51, 52, 53, 54]. However, some modeling strategies employ circular parti-
cles to represent grains and blocks [55, 56, 57], which does not capture the
complex variability of fragments’ shapes and sizes. Other studies use a ‘re-
placement’ method in which bigger grains are substituted by a set of smaller
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bodies once a criterion is reached [58, 43, 59], at the expense of missing
mass conservation or creating local over-stresses at the replacement instant.
Finally, energy consumption is not traceable when using circular bodies, or
ad-hoc parameters are necessary to estimate the fragmentation energy. While
these approaches have enabled the exploration of certain mechanisms of rock
and grain failure, no clear mapping between the variability of strength, fail-
ure modes, and the microstructure has been found for inherently anisotropic
materials. A correct simulation of these materials requires a model in which
bodies can break into irregular and size disperse fragments while simulta-
neously controlling the inherent anisotropy level. As we show in the next
section, these conditions can be met in 2D simulations using irregular convex
polygons.

2.1. Construction of inherently anisotropic samples
We build circular samples composed of smaller bodies called cells using

a Voronoi decomposition of a unitary circle. This procedure generates an
assembly of Ncl adjacent cells that we ‘glue’ using a cohesive bonding law.
This approach, known as the bonded-cell method (BCM), has been used in
numerous studies of the mechanical behavior of crushable granular materials,
both in 2D [60] and 3D [61, 62, 63].

A random Voronoi tessellation normally creates a disordered distribution
of cell shapes and sizes. In order to control the cell’s geometry (and, in effect,
the inherent anisotropy), we alter the initial tessellation in two steps. First,
we iteratively rebuild the Voronoi tessellation using the centroids of previous
tessellation seedings to produce similar cells. This approach is also called
centroid tessellation [64]. Then, the cells are elongated along a given direc-
tion and an anisometry level is estimated using the average aspect ratio of the
cells η = h/L, with h and L being the average short and long dimensions, re-
spectively. This anisometry represents the inherent anisotropy configuration
of the minerals in our model. We produced a set of samples with η = [1, 6]
in steps of 1 (see Fig. 3). Additionally, perturbations to the initial setting of
the tessellation enabled us to have slightly different cell arrangements. For
statistical representativeness, we built five different configurations for each
value of η.

In order to give mechanical strength to the assembly of cells, we define a
normal and tangential cohesion at the bonds (i.e., cell-cell interactions), Cn

and Ct, respectively. Cn prevents the interactions between cells from sep-
arating due to tensile stresses, while Ct provides resistance against sliding.
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Figure 2: Interaction law for cohesive bonds between cells for the normal (left) and the
tangential components (right) relative to the local framework coordinates.

We also preset a debonding distance δc needed to effectively break a cohe-
sive bond. By choosing a typical value of surface energy density for silicate
minerals γ = 50 J/m2 [65], we can then determine the separation threshold
as δc = 2γ/Cn, following fracture mechanics theory. Note that our model al-
lows us to independently define the tensile and shear bonding strength, but
for simplicity we set Cn = Ct. A detailed analysis of the combined effect of
varying Cn and Ct can be found in Ref. [61].

The critical rupture energy that a bond needs to break is thus Ec = 2γlc,
with lc the length of the interaction. Once Ec is reached, the cohesive bond
is removed, simulating a fissuring event. These fissures are considered dry
frictional surfaces, with µ being the coefficient of friction that we set to 0.4
(see Fig. 2 for a schematic representation of the bonding law).

In addition, numerical studies have explored the effect of the number of
cells on the failure strength of brittle materials, showing that an increased
number of cells lowers the failure strength [60, 63]. However, it was recently
shown that the scalability of failure strength is not simply linked to the
number of cells, but more importantly to the length of bonding interactions
[62, 66]. Thus, to make the tests comparable, samples must present the same
potential surface energy among the different values of η despite presenting a
different number of cells. So, in our tests, the samples have the same total
length of bonds.

2.2. Contact dynamics
The contact dynamics (CD) method is a discrete-element approach in

which rigid bodies interact via non-smooth laws [67, 68], i.e., impacts are
transmitted on an implicit time-stepping scheme. At the end of each time-
step, particles’ velocities and contact forces can therefore be simultaneously
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Figure 3: Samples presenting increasing average cell aspect ratio η. We varied η from (a) 1
up to (f) 6 in steps of 1.

computed without requiring force-overlapping laws (i.e., no regularization of
the contact law is needed). This allows the CD method to be unconditionally
stable and capable of employing larger time-steps than in alternative smooth
approaches. For details on implementation of the contact dynamics method,
see Refs. [69, 70].

In two-dimensional simulations, three main interactions can occur be-
tween convex bodies: vertex-vertex, vertex-edge, edge-edge (see Fig. 4).
Vertex-vertex interactions are rare and unstable, so they are discarded from
the computation and analysis. For edge-edge interactions, it is necessary
to consider two contact points to correctly resolve the contact mechanics;
however, only the resultant force is important, rendering the loci of the two
contact points irrelevant. For the interaction detection and classification, we
use the shadow-overlap method [71], which creates a separating plane between
two touching bodies via an iterative procedure. Updated body positions, ve-
locities, and interaction forces are governed by the equations of motion and
the cohesive bonding law we previously defined.

Finally, it is worth mentioning that our simulations were performed using
the CD method on the free and open-source platform LMGC90 [72, 73].

2.3. Test procedures
Samples are initially set matching the loading orientation with the cells’

preferred direction, so θ = 0◦. Then, we apply a gradually increasing vertical
force F using rigid platens up to the failure. To avoid dynamic perturbations
during loading, we make sure that, over a time-step, a load increment is very
small before Cnd, with d being the diameter of the samples. We systemati-
cally vary θ in the range [0◦, 90◦] in steps of 5◦, i.e., 18 different orientations
(see Fig. 1). Finally, we test five different configurations of η for each one
of the angles for statistical representativeness. Videos of the tests can be
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Figure 4: Different interaction types between convex polygons: (left) vertex-vertex, (cen-
ter) vertex-edge, and (right) edge-edge.

found at the following link https://youtu.be/N66c_4crwlM. We present
the averaged results of the total 540 simulations we performed.

3. Macroscopic observations

3.1. Failure strength
Our samples are able to reproduce a brittle material behavior by sup-

porting a load that gradually increases up to a critical value that triggers
the collapse of the assembly (see Fig. 5(a)). The critical force at failure Fc

allows us to characterize strength using the vertical stress at failure, defined
as

σyy =
Fc

d
. (1)

Figure 5(b) summarizes the average values for σyy found in our tests as a
function of θ and the inherent anisotropy η. Under the same loading rates,
the internal cohesion is a natural scaling parameter for these systems. So,
we plot σyy normalized by Cn.

Note that for the case η = 1, in which the cells do not present any
characteristic orientation, the strength is independent of the angle θ. For
the anisotropic configurations where η > 1, the strength remains relatively
similar for loading orientations below θ ≃ 70◦, but always underneath the
values found for the case η = 1. Beyond θ ≃ 75◦, there is an important gain
in strength, which seems accentuated as η increases. Finally, a maximum
failure strength is found for loading orientation perpendicular to the layering
of the cells (i.e., θ = 90◦).

As previously mentioned, experimental observations have systematically
highlighted the ‘U ’ shape displayed in Fig. 5(b), with a critical loading ori-
entation θc exhibiting the minimal strength. Simple stress considerations can
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(a) (b)

Figure 5: (a) Typical evolution of the reaction force F on the loading plate as a function
the simulation time normalized by the time at failure tc. (b) Strength σyy normalized by
the normal bonding cohesion Cn as a function of the relative loading orientation θ and
different levels of inherent anisotropy η. In the inset, we present the same data in lin-log
scale.

predict that critical orientation as cos 2θc = (1−κ)/2(1+κ), with κ = σ1/σ2

being the ratio between the major and minor principal stresses on the sample
[1]. For the diametral point load, in which σ2 = 0, we can easily deduce that
θc = 30◦. Nonetheless, in our tests θc varies with η from ≃ 30◦ for η = 2,
to ≃ 15◦ for higher values of η (see inset of Fig. 5(b)). These observations
show that our numerical experiments are in good agreement with experimen-
tal testing and analysis, despite the fact that the ‘U ’ shape in our results is
more subtle than what is reported in literature. We have to remark, nonethe-
less, that larger variations of the failure strength with angle θ can be found
once a confining pressure is applied to the sample [3]. In addition, some of
the tests on inherently anisotropic rocks are performed by loading the cir-
cular faces of the rock cores. It has been shown, however, that diametrical
point load on cylindrical samples produces more subtle variations of failure
strength [9] The increasing disagreement in θc with respect to the theoreti-
cal estimation also suggests that the inherent anisotropy deeply modifies the
stress configuration within the samples.

For the case without inherent anisotropy, we can follow classical rock me-
chanics testing and use the maximum tensile stress criterion to characterize
the strength of our samples [74, 75]. So the expression σc = 2Fc/πd allows
one to deduce the maximum tensile stress at the center of the circular sample.
Using that equation, we find that, on average, σc/Cn ≃ 1. This result allows
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us to make two important observations: 1) our model correctly scales the
internal material strength (Cn) to the macroscale, and 2) it can be correctly
assumed that for a non-anisotropic brittle structure, the tensile stresses are
indeed triggering the failure. However, experimental testing characterizing
inherently anisotropic materials should be aware that the tensile stresses are
not necessarily at the origin of failure.

3.2. Statistical variability of strength
To better understand the variability of failure strength, we analyze our

results in terms of ‘survival’ using the Weibull probability distribution. This
approach assumes that a sample’s probability of not presenting failure Ps

(i.e., the survival) depends on the applied stress σ as

Ps = exp

{
−
(

σ

σ0

)m}
, (2)

with σ0 being a reference stress for which Ps = 1/e ≃ 37%. The exponent
m is known as the Weibull modulus and is associated with the sharpness
of the probability distribution. As m increases, so does the slope of the
distribution, meaning that the failure strength is focused on a given value.
Conversely, as m decreases, the stress range within which the particle may
break broadens.

Figure 6 presents the survival probability distribution Ps as a function of
the applied stress and the different values of η, combining all results by θ. As
expected, the stress range σ within which we can expect failure considerably
increases with η. The dashed lines correspond to the fitting of Eq. (2) by
finding m and σ0 with a least-squares minimization. The inset on the same
figure presents the values found for the Weibull modulus m as a function of η.
Typical values for parameter m for silicate materials are found in the range
[1.5, 4] [76, 19]. We observe that for microstructures with η = 1, m reaches a
value of ≃ 2.5 and then smoothly decreases as values of inherent anisotropy
grow. It is remarkable that our experiments satisfactorily reproduce the
Weibull modulus for brittle silicate materials despite the strong variation
of the cell’s configuration, the simplicity of our model, and the fact that
we are not able to store elastic energy/deformation in the bulk of the cells.
Typical values for parameter m for silicate-rich materials have been found, for
instance, in the range m ∈ [1.16, 1.93] for silica sand [77], m ∈ [1.23, 3.04] [78]
for different silica sands from Japan, m ∈ [3.34, 3.44] [79] for limestone sand,
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Figure 6: Probability of survival Ps as a function of the applied stress σ for each value of
η and all values of θ combined. The dashed lines correspond to the fit of Eq. (2) to the
data. In the inset, we present the corresponding value of the Weibull modulus for each fit
of the Weibull distribution.

and m ∈ [1.26, 2.52] for calcareous and quartzite shale aggregate rocks [21],
agreeing with our results. Although our modeling strategy was developed
targeting the brittle behavior of soil grains and rocks, higher values of m can
be obtained for different materials by adjusting parameters γ, Cn, and Ct.

If we combine all values of failure strength - not distinguishing between η
and θ - we find that m ≃ 1.5, which falls within a typical range of values for
rocks or grains that are not necessarily anisotropic. This observation suggests
that laboratory tests in which no special attention is given to the degree
of inherent anisotropy or loading orientation can gather a wide variety of
material characteristics. Such a simplified approach could thus be misleading
and limit the predictability of the material failure strength.

3.3. Macroscopic failure modes and energy consumption
Figure 7 presents the fissuring paths for some of the samples with η = 2

and varying loading orientation θ. When θ = 0◦, the failure is roughly
vertical, matching the loading orientation. The failure mechanism is similar
when θ = 90◦, although the zones in contact with the platens show more
damage. In these two cases, we can infer that tensile stresses are the source of
fissuring because many interactions are debonded orthogonally to the loading
direction. However, when θ = 30◦ and 60◦, the failure mode is different.
The fissuring is diagonal to the loading, which suggests that shearing is the
preferred fissuring mode. These observations are in agreement with physical
experiments [9, 50, 10] and help to justify the substantial drop in failure
strength σyy/Cn for inherently anisotropic structures.
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θ = 0◦ θ = 30◦ θ = 60◦ θ = 90◦

Figure 7: Evolution of the failure mechanism as the loading orientation increases from
θ = 0◦ up to θ = 90◦ for the sample with inherent anisotropy η = 2.

Note that this observation about the macroscopic failure modes is de-
scriptive. A quantitative assessment of the energy consumption shows that
all the samples consume roughly the same amounts of fragmentation energy
independently of θ and η using the same Bonded-Cell Method [66]. This is
a very counterintuitive phenomenon that has been scarcely studied or vali-
dated in physical experiments. A recent work [] using notched rock cores has
established a dependency between the fragmentation energy and the bedding
angle θ, although different test conditions and variability of results call for
further experimental validations. While our numerical model is indeed sim-
ple and does not consider the elastic deformation the cells can undergo, the
BCM modeling let us deduce that the total length of cohesive bonds is the
central parameter controlling the energy consumption. Thus, the variability
in failure strength is strongly linked to microstructural elements rather than
to mechanisms splitting failures between tensile and shearing modes.

4. Microstructural analysis

As previously mentioned, rock microstructure is often related to min-
eral or grain size and shape distribution, joint spacing/density, fissuring,
and etc. All of these geometrical characteristics clearly affect the failure
strength. However, the microstructure cannot only be reduced to its geo-
metrical aspects. Accounting for the connectivity between cells and the force
transmission are key elements behind the macroscopic mechanical behavior.

In order to do this, we first need to define a framework of analysis. We
have two possibilities when dealing with adjacent cells. First, the interaction
frame in which the bond forces are defined as f = fnn + ftt, with n being
the normal unit vector perpendicular to the contact line, and t being the
tangential unit vector.
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Figure 8: Schematic representation of the local frames created between two irregular cells
i and j. Unitary vectors n and t are linked to the bond, while n′ and t′ are defined upon
the branch vector. Note that angles Θ and Θ′ are the orientation of n and n′, respectively,
measured counterclockwise from the horizontal.

We can also define the inter-center vectors between cells, also called
branch vectors, as ℓ = ℓnn + ℓtt, with ℓn and ℓt being the normal and tan-
gential components. These branches let us define a second frame in which
the unit vector n′ is defined along ℓ, and t′ is the tangential unit vector
(see Fig. 8) [80]. In this frame, the forces between the cells are written
as f = f ′

nn
′ + f ′

tt
′, with f ′

n and f ′
t - the radial and ortho-radial forces,

respectively - acting between the centers of the cells. Finally, the branch
in this frame is simply written as ℓ = ℓn′, with ℓ being the length of the
branch vector. For convenience, we used the branch frame for the following
microstructural analysis.

As an illustration, Fig. 9 (top) presents the branch network and the force
network (bottom) with lines whose thickness is proportional to the intensity
of the force at the interactions. A visual inspection shows how the geometry
of the cells dramatically modifies both networks. As η increases, the branch
network becomes more irregular and the force chains more diffuse within the
volume.

4.1. Geometrical description
4.1.1. Connectivity

We can characterize the connectivity between cells by using the coordi-
nation number Z. This parameter shows the average number of neighboring
interactions per cell as Z = 2Nc/Ncl, with Nc being the number of bonds
between cells and Ncl the number of cells. There is, however, a subtle differ-
ence in coordination number between the intact state (i.e., at the beginning
of the loading) and the coordination number we are able to compute instants
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Figure 9: (Top) Networks created by bonded adjacent cells for η = 1, 3 and 6 displayed
with lines between the center of mass of the corresponding cells. (Bottom) Force networks
between bonded cells. The thickness of the lines is proportional to the force intensity.
Traction forces are displayed in blue and compression forces in red. These screenshots are
taken for cases in which the loading orientation is θ = 0.
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Figure 10: Evolution of the coordination number at the onset of failure Z∗ as a function
of the loading orientation θ and the inherent anisotropy η.

before failure. Both values differ, as fissuring removes cohesive bonds pre-
viously capable of bearing force. We characterize the onset of failure as the
state bearing σyy, so let us consider the cohesive bonds at the onset of failure
N∗

c as the effective number of interactions, so Z∗ = 2N∗
c /Ncl.

Figure 10 presents the averaged coordination number at the onset of
failure as a function of η and θ. We observe that the connectivity decreases
as θ and η increase. In other words, Z∗ varies conversely to σyy showing
that inherently anisotropic materials can bear larger stresses despite the fact
that cells are less connected. The evolution of Z∗ provides a counterintuitive
picture of the effect of θ and η on the microstructural properties at failure.
However, as previously shown in Fig. 8, the branch and force networks also
carry a strong anisotropic character that calls for a higher-order analysis
accounting for their distribution in space.

4.1.2. Branch orientations
We can define the density probability distribution Pc of branch vector

orientations as
Pc(Θ

′) =
N∗

c (Θ
′)

N∗
c

(3)

with N∗
c (Θ

′) being the number of branches pointing at angle Θ′ at the
onset of failure. The inset of Fig. 11(b) presents the angular distributions
Pc(Θ

′) with symbols for three different values of inherent anisotropy and
loading orientations θ = 0◦ and θ = 90◦. We can see that when η = 1
the distribution remains almost circular, highlighting the fact that the bond
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network is nearly isotropic and independent of the assembly’s rotation. Con-
versely, the distributions for η > 1 present preferential orientations matching
the preferred orientation of the cells.

These angular distributions can also be described using truncated Fourier
series, as

Pc(Θ
′) =

1

2π
{1 + a′c cos 2 (Θ

′ −Θ′
c)} , (4)

with Θ′
c being the preferential orientation of the distribution and a′c its

anisotropy level, i.e., the branch vector orientation anisotropy. Note that a′c =
0 means a circular distribution Pc, in which bonds are equally presented in all
orientations Θ′. Conversely, as a′c increases, more bonds present a preferential
orientation in space. Although we could fit Eq. (4) to our measures to find
a′c and Θ′

c, we prefer to use the fabric tensor defined as [81]

Fij =

∫ π

0

Pc(Θ
′)n′

i(Θ
′)n′

j(Θ
′)dΘ′, (5)

with n′ = {cosΘ′, sinΘ′}. Equation (5) lets us define the anisotropy
of branch orientations as a′c = 2(F1 − F2), with F1 > F2 being the eigen-
values of F . The major principal direction of the fabric tensor is Θ′

c =
1/2 arctan{2Fxy/(Fxx−Fyy)}, with Fxx and Fyy being the components in the
diagonal of F , and Fxy the component off the diagonal. Figure 11 presents
the corresponding values of preferential branch orientation and anisotropy as
a function of η and θ.

We can observe that a′c is close to zero for η = 1, exposing the isotropic
character of the branch network and its independence before θ. For η > 1,
a′c can reach larger values as high as ≃ 1.1 for η = 6. There is also a slight
drop in a′c occurring for values of θ > 70◦. This phenomenon, combined with
the drop of Z∗ we observed before, suggests that contacts are mostly lost in
the minor orientation of the fabric tensor as η increases.

In Fig. 11(b), we present the evolution of Θ′
c as a function of the loading

orientation θ. For η = 1, Θ′
c is irrelevant given that a′c ≃ 0, so it is omitted

from the plot. But as soon as η > 1, Θ′
c decreases as π/2− θ which matches

the cells’ orientation.
Along with Pc, we can also characterize the angular branch length dis-

tribution ⟨ℓ⟩(Θ′). This distribution can be computed as a function of Θ′

as
⟨ℓ⟩(Θ′) =

1

N∗
c (Θ

′)

∑
c∈δΘ′

ℓc, (6)
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(a) (b)

Figure 11: Bond orientation anisotropy a′c (a) and the preferential orientation Θ′
c (b) for

different inherent anisotropy levels η and loading orientations θ. In the inset: probability
of branch orientations Pc(Θ

′) shown with symbols for three values of inherent anisotropy
η and loading orientation θ = 0◦ and θ = 90◦. The dashed lines are the fitting curves
using Eq. (4).

with ℓc being the length of the branches pointing at small intervals of
angular orientation δΘ′. The inset in Fig. 12(b) presents these angular
distributions for loading orientations θ = 0◦ and θ = 90◦, and three values
of η. These angular distributions for branch lengths closely follow the trends
previously seen for Pc(Θ

′).
As with branch orientations, the angular evolution of branch lengths can

be described using the expression

⟨ℓ⟩(Θ′) = ⟨ℓ⟩ {1 + a′ℓ cos 2 (Θ
′ −Θ′

ℓ)} , (7)

with Θ′
ℓ being the preferential orientation, and a′ℓ the level of anisotropy. In

the insets of Fig. 12(b), we show that the branch length distributions become
more anisotropic as η increases, and that the longest branches predominately
point in the same direction as the cells are pointing.

To find the branch length anisotropy, it is convenient to build the branch
tensor, which is defined in an integral form as [81]

Hℓ
ij =

∫ π

0

⟨ℓ⟩(Θ′)n′
i(Θ

′)n′
j(Θ

′)dΘ′. (8)

Note that this integral is computed in the range [0, π] given the periodic
evolution of the angular distributions in that interval. We can then compute
the branch length anisotropy as a′ℓ = 2(Hℓ

1 − Hℓ
2)/(H

ℓ
1 + Hℓ

2), with Hℓ
1 and
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(a) (b)

Figure 12: Evolution of the normal branch length anisotropy (a) and its preferential
angular orientation (b) as a function of the loading orientation and values of inherent
anisotropy η. In the inset: angular distribution branch lengths for some values of inherent
anisotropy η for loading orientations 0◦ and 90◦. We also present Eq. (7), fitting the
angular branch length distributions with dashed lines.

Hℓ
2 being the eigenvalues of the tensor, so Hℓ

1 > Hℓ
2. The same construction

allows us to compute Θ′
ℓ as the major principal orientation of Hℓ using the

same approach as with the fabric tensor. In the inset of Fig. 12(b), we
present Eq. (7) with dashed lines using the values extracted from the tensors
above, and nicely fitting the angular distributions. We deliberately omitted
the evolution of ⟨ℓ⟩(Θ′) for η = 1 since the corresponding values for a′ℓ are
negligible.

Figures 12(a) and 12(b) gather the results for the branch anisotropies
a′ℓ and preferred orientations Θ′

ℓ as a function of the loading orientation θ
and the levels of inherent anisotropy η. They show that the branch length
anisotropy increases with η from a′ℓ ≃ 0 for η = 1, up to a′ℓ ≃ 0.7 for η = 6.
In all of the cases, these anisotropies present only minor variations with the
loading orientation θ. We can then say that the variation of the preferred
orientation for branch lengths evolves roughly as π/2−θ, similarly to Pc(Θ

′).
The large variations of geometrical anisotropies that we observed are in-

duced by the inherent anisotropy of the cells - and, furthermore, η is likely
also inducing force transmission heterogeneities within the samples. In order
to investigate this, we focus next on the interaction forces between cells.

4.1.3. Force orientations
Similarly to the analysis undertaken for branches, we can analyze the

interaction forces between cells by using the angular distribution of radial
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and ortho-radial forces f ′
n and f ′

t , respectively. These angular distributions
can be computed as

⟨f ′
n⟩(Θ′) =

1

Nc(Θ′)

∑
c∈δΘ′

f ′
n, and (9)

⟨f ′
t⟩(Θ′) =

1

Nc(Θ′)

∑
c∈δΘ′

f ′
t . (10)

In the insets of Fig. 13(b), we present the angular distribution ⟨f ′
n⟩(Θ′)

for loading orientation θ = 45◦ which shows the misalignment of the largest
forces with respect to the vertical (i.e., the loading orientation). In the insets
of Fig. 13(d), we present the distributions of ortho-radial forces for θ = 0◦

and θ = 90◦, highlighting how widely these distributions vary as the assembly
rotates. Regardless, these angular distributions remain periodic and smooth
enough to fit Fourier series for their characterization. We can thus describe
the angular variation of forces as

⟨f ′
n⟩(Θ′) = ⟨f ′

n⟩
{
1 + a′fn cos 2

(
Θ′ −Θ′

fn

)}
, and (11)

⟨f ′
t⟩(Θ′) = ⟨f ′

n⟩
{
−a′ft sin 2

(
Θ′ −Θ′

ft

)}
, (12)

with a′fn and a′ft being the level of anisotropy for each distribution, and
Θ′

fn
and Θ′

ft
the respective preferential orientations. For convenience, we

build force tensors that allow us to easily compute the anisotropies and main
orientation of each distribution as

H
f ′
n

ij =

∫ π

0

⟨f ′
n⟩(Θ′)n′

i(Θ
′)nj(Θ

′)dΘ′, and (13)

H
f ′
t

ij =

∫ π

0

⟨f ′
t⟩(Θ′)ni(Θ

′)tj(Θ
′)dΘ′. (14)

This lets us compute the levels of force anisotropy as a′fn = 2
(
H

f ′
n

1 −H
f ′
n

2

)
/(

H
f ′
n

1 +H
f ′
n

2

)
for the radial forces and a′ft = 2

(
H

f ′
t

1 −H
f ′
t

2

)
/
(
H

f ′
n

1 +H
f ′
n

2

)
for the ortho-radial forces, where Hα

1 and Hα
2 are the eigenvalues of each one

of the tensors. Note that Hα
1 > Hα

2 , and α stands for either the radial or
ortho-radial components of the forces. It is worth mentioning that tr

(
Hf ′

n
)
=

⟨f ′
n⟩, i.e., the average radial force, and tr

(
Hf ′

t

)
= 0 by equilibrium of force

moments over the cells.
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(a) (b)

(c) (d)

Figure 13: Evolution of normal (top) and tangential (bottom) force anisotropies (left)
and the preferential orientation of their respective angular distribution (right) for different
values of inherent anisotropy η and loading orientation θ.
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Figures 13(a) and 13(b) display the radial force anisotropies and their
preferential orientations for the different levels of inherent anisotropy η and
loading orientation θ. In the case of η = 1, we can observe that a′fn ≃ 1.8
independently of the loading orientation. Then, a′fn progressively increases
with η in the range θ ≃ [0◦, 30◦]. After the loading orientation θ ≃ 30, the
radial force anisotropy presents a decreasing trend relatively similar among
the different values of η > 1. The preferred orientations of these forces show
larger variations with θ; a behavior that seems amplified with η. Also, note
that for Θ′

fn
a minimum value systematically appears around ≃ 20◦.

For ortho-radial forces, Figs. 13(c) and 13(d) present the evolution of
the level of anisotropy and preferential orientations as a function of η and θ.
In this case, we observe a continuous increase of a′ft as a function of η from
loading orientations θ = 0◦ to θ ≃ 45◦. Beyond that loading orientation, the
ortho-radial force anisotropy reaches a plateau and barely varies with θ. For
the orientations Θ′

ft
, we can see a variation that becomes more important as

the level of inherent anisotropy increases. Although we might have expected a
joint evolution of the preferential radial and ortho-radial forces’ orientations,
these figures show that a non-evident trade-off of force anisotropies occurs
for highly anisotropic materials. This fact is, of course, emphasized by the
point loading configuration which signs the force transmission at bonds.

5. Scaling up the strength from the microstructure

5.1. Microstructural contributions to the stress tensor
The previous microstructural parameters - concerning bonds, branches,

and forces - must act together to produce the macroscopic failure strength
we initially measured. This mapping between the micro and macro scales is
especially challenging because of the varying shapes and sizes of the cells and
the fact that the different microstructural tensors are strongly misaligned and
evolving with θ.

In order to reconcile the micro and macro scales, let us consider the
granular stress tensor as [82, 83]

σij =
1

V

∑
∀c

f c
i ℓ

c
j, (15)

where V is the volume of the sample, and the sum includes the dyadic product
of the force f and branch ℓ vectors for all interactions c. Supposing that the
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distribution of forces and branches is uncorrelated (which is verified in our
simulations), we can rewrite the stress tensor in terms of angular distributions
on the frame {n′, t′} as [81]

σij = nc

∫ π

0

{⟨f ′
n⟩(Θ′)n′

i(Θ
′)− ⟨f ′

t⟩(Θ′)t′i(Θ
′)} ⟨ℓ⟩(Θ′)n′

j(Θ
′)Pc(Θ

′)dΘ′, (16)

with nc being the bond number density defined as Nc/V = Z/(2⟨Vcl⟩), where
⟨Vcl⟩ is the average volume per cell. Note that we can also write ⟨Vcl⟩ =
(π/4)⟨dcl⟩2, with ⟨dcl⟩ being the equivalent average diameter of the cells.
When we replace Eqs. (4), (7), and (11) in the previous expression, focus
only on the vertical component of the tensor (i.e., σyy), and integrate over
the interval [0, π], we find a microstructural definition of the vertical stress
at the onset of failure as

σth
yy =

Z⟨f ′
n⟩⟨ℓ⟩

π⟨dcl⟩2

{
1− 1

2

∑
a′k cos 2 (Θ

′
k) +

1

2

∑
a′la

′
m cos 2 (Θ′

m −Θ′
l) +O

}
.

(17)
The term in brackets shows the contributions of the different anisotropies

to the strength. In that term, the first sum runs in the set a′k ∈ {a′c, a′ℓ, a′fn , a
′
ft
},

and in the respective values for Θ′
k. The second sum is a product of anisotropies

in which the combinations of indices l and m belong, respectively, to the set
{a′fna

′
ℓ, a

′
fn
a′c, a

′
ℓa

′
c}, with the respective angles for Θ′

m and Θ′
l. The higher-

order term O involves triple products of anisotropies and is purposely ne-
glected for the sake of simplicity. Also note that we added the superscript
‘th’ to emphasize that this value of strength results from the theoretical
decomposition of the stress tensor. For simplicity, the term related to the
anisotropies is henceforth written as A.

Equation (17) illuminates the fact that non-trivial microstructural com-
pensations occur between 1) the different anisotropy levels, 2) the preferred
orientations of angular distributions, and 3) geometrical and mechanical fea-
tures. In addition, the choice of the branch frame {n′, t′} instead of the
bond frame {n, t} is deliberate because it allowed us to reduce the number
of anisotropies and the number of terms involved in A [80].

In Fig. 14, we summarize the evolution of the different parameters in-
volved in A for single and double anisotropies. On the one hand, we see
that the geometrical anisotropies related to the branch orientation a′c and
branch lengths a′ℓ smoothly decrease as a function of the loading orientation
θ. On the other, the anisotropies related to the force transmission a′fn and
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a′ft have a highly non-linear evolution with θ. For angles between θ = 0◦

and θ = 30◦, the radial force anisotropy increases but then finds a relatively
steady value for larger loading orientations. For angles greater than θ ≃ 45◦,
the ortho-radial anisotropy increases strongly as a function of θ. For the
terms involving the product of anisotropies, the trends are all quite similar
and not negligible in contribution.

At the bottom of Fig. 14, we see how all of these anisotropies add up.
Given the strong variation of all the anisotropies and preferential orientations,
it is notable that the term A ends up fluctuating around the case η = 1.
This is clearly a mechanism involving direct compensations between geo-
metrical microstructural characteristics and the force transmission at bonds.
This phenomenon - in which the term A lies close to one - shows that the
strong variation of the macroscopic failure strength must lie on the parame-
ters Z⟨f ′

n⟩⟨ℓ⟩ of the microstructural decomposition of stresses. Note that a
version of Eq. (17) that neglects the term A has been used many times be-
fore for conglomerates or granular assemblies in which particles are of similar
size and shape [84, 85, 86]. Nonetheless, as we just observed, A cannot be
neglected for ellongated bodies.

In Fig. 15(a), we see the evolution of the average branch length at the
onset of failure as a function of the inherent anisotropy and the loading ori-
entation, which shows a gradual drop as the loading becomes perpendicular
to the layering. Such a variation is accentuated as η grows. In Fig. 15(b),
we present the evolution of the average radial force ⟨f ′

n⟩, which is normalized
by the internal cohesion and the average cell equivalent diameter. This curve
varies widely and, indeed, carries most of the shape of the macroscopic failure
strength.

These observations allow us to conclude that the microstructural mecha-
nisms producing the increase of failure strength with θ are related to the rise
of radial forces, the drop of average branch length and coordination number
Z, and the complex compensations occurring within the term A.

Finally, in Fig. 16, we plot σth
yy nicely reproducing the macroscopic verti-

cal failure stress measured in Sec. 3. It is remarkable how the approach of
decomposition of the granular stress tensor in terms of angular distributions,
in spite of the large variability of anisotropies and preferred orientations for
each distribution, is capable of providing these set of satisfactorily good pre-
dictions for the failure strength. The small differences between the measure
and the decomposition are linked to the higher-order terms that were ne-
glected in Eq. (17). Thus, based on a fine description of the phenomena
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Figure 14: Evolution of the terms in Eq. (17) related to single anisotropies (first row) and
double anisotropies (second row). We also present the sum of these different parameters
in the term A (bottom).

(a) (b)

Figure 15: (a) Evolution of the average branch length as a function of η and θ. (b)
Evolution of the radial average force as a function of η and θ. In the inset: the same data
in lin-log scale.
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Figure 16: Failure strength measure through the wall forces just as in Fig. 5(b) (solid
lines), and the same strength found using the microstructural decomposition of the stress
tensor using Eq. (1) (dashed lines).

at bonds and mineral organization in space, our micromechanical descrip-
tion proves capable of describing and scaling up the macroscopic behavior
we observe in laboratory.

6. Summary

We developed a series of numerical tests to study the failure strength
of brittle materials reminiscent of schists, slates, shales, etc, whose compo-
nents have a preferential orientation, i.e., an inherent anisotropy. Using a
bi-dimensional discrete-element method, we built samples in which we could
control the degree of inherent anisotropy by using a modified Voronoi tes-
sellation. This approach allowed us to generate a set of subdivisions (the
tessellation) of adjacent irregular polygons that we called cells. The common
edges between cells interacted via cohesive bonds, enabling us to control both
the failure strength and the cumulated surface energy necessary to produce
fissuring. We then measured the macroscopic failure strength by applying
a diametrical point load onto circular samples up to breakage. The failure
strength turned out to be strongly affected by the layering orientation with
respect to the loading direction θ. As observed in many experimental tests,
the failure strength in our numerical tests evolved in a parabolic ‘U ’ shape,
with a minimum value around a loading orientation of θ ≃ 25◦.

We also analyzed the variability of the failure strength using the Weibull
survival probability, concluding that mixing several anisotropic configura-
tions and loading orientations may lead to misleading conclusions upon the
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average failure strength and data scatter. This means that experimental test-
ing must consider the microstructure of samples to avoid a misinterpretation
of the strength of anisotropic brittle materials.

Finally, we performed a thorough characterization of geometrical prop-
erties of the cells’ assemblies and force transmission mechanisms by means
of the fabric, branch, and force tensors, as well as an approximation of their
angular distributions using Fourier series. Exploiting the definition of the
granular stress tensor in terms of angular contributions, we were able to find
the microstructural elements that explain the variability of strength at the
macroscopic scale. This was not a straightforward task. The strong geo-
metrical and force anisotropies we found - as well as the misalignment of
the different tensors - prompted us to undertake a full description of the
contributions of anisotropies involving high-order terms seldom seen when
analyzing rocks or granular media. Instead of simplifying particles’ shape
and size variability, we modelled the complexity of these materials in or-
der to identify the microstructural elements responsible for the macroscopic
phenomena. We found that geometrical and mechanical anisotropies present
complex compensations, which means they are not the main source of the
failure strength variations. Rather, it is the cell coordination, the average
branch length, and the average radial forces that present the larger fluctu-
ations - making them the key microstructural elements at the origin of the
macroscopic failure strength.

Real materials are tremendously complex. Through this work, we sought
to explore this complexity with the most detailed parameters we could gather
linked to the granular stress tensor. Note that the circular shape we used for
the samples was simply a choice of configuration that allowed us to compare
our results to those obtained in rock testing. Our approach, however, is gen-
eral and can be extended to any sample shape, assemblies of many crushable
bodies, and diverse bonding behavior other than pure cohesive. Another very
interesting perspective deals with the mechanics of porous rocks or grains for
which our numerical model can be modified to not only reproduce adjacent
cell configurations, but structures with holes in it. Many questions remain
unresolved concerning the compaction or shear properties (rheology) of as-
semblies composed of several crushable inherently anisotropic bodies, which
would benefit from future research.
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