![]() | Monter d'un niveau |
Aghili, R., Li, H., & Khomh, F. (2025). Protecting Privacy in Software Logs: What Should Be Anonymized? Proceedings of the ACM on software engineering., 2(FSE), 1317-1338. Lien externe
Foalem, P. L., Da Silva, L. M. P., Khomh, F., Li, H., & Merlo, E. (2025). Logging requirement for continuous auditing of responsible machine learning-based applications. Empirical Software Engineering, 30(3), 97 (37 pages). Lien externe
Jin, B., Li, H., & Zou, Y. (2025). Impact of extensions on browser performance: An empirical study on google chrome. Empirical Software Engineering, 30(3), 41 pages. Lien externe
Liu, Y., Foundjem, A. T., Khomh, F., & Li, H. (2025). Adversarial attack classification and robustness testing for large language models for code. Empirical Software Engineering, 30(5). Lien externe
Ma, N., & Li, H. (2025). Understanding and Estimating the Execution Time of Quantum Circuits. ACM Transactions on Software Engineering and Methodology. Lien externe
Majidi, F., Khomh, F., Li, H., & Nikanjam, A. (2025). An efficient model maintenance approach for MLOps. Empirical Software Engineering, 31(1), 48 pages. Lien externe
Noei, S., Li, H., & Zhou, Y. (2025). An empirical study on release-wise refactoring patterns. [Autre type de communication de conférence]. Proceedings of the ACM on Software Engineering, 2(FSE), 403-424. Présentée à ACM SIGSOFT International Conference on Software Testing and Analysis (ISSTA), Trondheim, Norway. Disponible
Qin, Q., Djian, B. P. P., Merlo, E., Li, H., & Gambs, S. (2025). Representation-based fairness evaluation and bias correction robustness assessment in neural networks. Information and Software Technology, 107876 (21 pages). Lien externe
Shahedi, K., Li, H., Lamothe, M., & Khomh, F. (2025). Tracing Optimization for Performance Modeling and Regression Detection. ACM Transactions on Software Engineering and Methodology. Lien externe
Wu, X., Li, H., & Khomh, F. (2025). What information contributes to log-based anomaly detection? Insights from a configurable transformer-based approach. Automated Software Engineering, 32(2), 29 pages. Lien externe
Aghili, R., Li, H., & Khomh, F. (juin 2025). Protecting Privacy in Software Logs: What Should Be Anonymized? [Communication écrite]. ACM International Conference on the Foundations of Software Engineering (FSE 2025), Trondheim, Norway. Publié dans Proceedings of the ACM on Software Engineering, 2(FSE). Lien externe
Caumartin, G., Qin, Q., Chatragadda, S., Panjrolia, J., Li, H., & Elias Costa, D. (mars 2025). Exploring the Potential of Llama Models in Automated Code Refinement: A Replication Study [Communication écrite]. IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER 2025), Montreal, QC, Canada. Lien externe
Ghari, S., Fokaefs, M., & Li, H. (juin 2025). SparkPerf: A Benchmarking Framework for Evaluating the Performance of Spark Data Analytics Projects [Communication écrite]. IEEE Cloud Summit 2025, Washington, DC, USA. Lien externe
Huang, S.-W., Wu, X., & Li, H. (juin 2025). LogLSHD: Fast Log Parsing with Locality-Sensitive Hashing and Dynamic Time Warping [Communication écrite]. 21st International Conference on Predictive Models and Data Analytics in Software Engineering (PROMISE 2025)), Trondheim, Norway. Lien externe
Liao, L., Eismann, S., Li, H., Bezemer, C.-P., Costa, D. E., van Hoorn, A., & Shang, W. (avril 2025). Early Detection of Performance Regressions by Bridging Local Performance Data and Architectural Models [Communication écrite]. 47th International Conference on Software Engineering (ICSE 2025), Ottawa, ON, Canada. Lien externe
Njoku, A. O., Li, H., & Khomh, F. (mai 2025). Kernel-Level Event-Based Performance Anomaly Detection in Software Systems under Varying Load Conditions [Communication écrite]. 16th International Conference on Performance Engineering (ICPE 2025), Toronto, ON, Canada. Lien externe
Qin, Q., Aghili, R., Li, H., & Merlo, E. (mars 2025). Preprocessing is All You Need: Boosting the Performance of Log Parsers with a General Preprocessing Framework [Communication écrite]. IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER 2025), Montreal, QC, Canada. Lien externe
Qin, Q., Li, H., Merlo, E., & Lamothe, M. (avril 2025). Automated, Unsupervised, and Auto-Parameterized Inference of Data Patterns and Anomaly Detection [Communication écrite]. 47th International Conference on Software Engineering (ICSE 2025), Ottawa, ON, Canada. Lien externe
Shahedi, K., Lamothe, M., Khomh, F., & Li, H. (avril 2025). JPerfEvo: A Tool for Tracking Method-Level Performance Changes in Java Projects [Communication écrite]. 22nd International Conference on Mining Software Repositories (MSR 2025), Ottawa, ON, Canada. Lien externe
Qin, Q., Li, H., Merlo, E., & Lamothe, M. (2025). Automated, Unsupervised, and Auto-parameterized Inference of Data Patterns and Anomaly Detection [Ensemble de données]. Lien externe