<  Retour au portail Polytechnique Montréal

Documents publiés en "2025"

Monter d'un niveau
Pour citer ou exporter [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
Grouper par: Auteurs ou autrices | Département | Sous-type de document | Aucun groupement
Aller à : A | B | D | F | J | K | L | M | N | O | S | T | V | W
Nombre de documents: 34

A

Abidi, M., Grichi, M., Khomh, F., & Guéhéneuc, Y.-G. (2025). Anti-patterns and Code Smells for Multi-language Systems. Dans Wallingford, E., Zdun, U., & Kohls, C. (édit.), Transactions on Pattern Languages of Programming V (p. 118-161). Lien externe

Aghili, R., Li, H., & Khomh, F. (juin 2025). Protecting Privacy in Software Logs: What Should Be Anonymized? [Communication écrite]. ACM International Conference on the Foundations of Software Engineering (FSE 2025), Trondheim, Norway. Publié dans Proceedings of the ACM on Software Engineering, 2(FSE). Lien externe

Aghili, R., Li, H., & Khomh, F. (2025). Protecting Privacy in Software Logs: What Should Be Anonymized? Proceedings of the ACM on software engineering., 2(FSE), 1317-1338. Lien externe

B

Ben Braiek, H., & Khomh, F. (2025). Machine learning robustness: a primer. Dans Lorenzi, M., & Zuluaga, M. A. (édit.), Trustworthy AI in Medical Imaging (p. 37-71). Lien externe

Brown, S., Khomh, F., Cavarroc-Weimer, M., Méndez, M. A., Martinu, L., & Sapieha, J.-E. (2025). Machine Learning Approach to the Assessment and Prediction of Solid Particle Erosion of Metals. Tribology International, 211, 110903 (13 pages). Lien externe

D

Da Silva, L. M. P., S. AMHI, J., & Khomh, F. (2025). LLMs and Stack Overflow Discussions: Reliability, Impact, and Challenges [Ensemble de données]. Lien externe

Da Silva, L. M. P., Samhi, J., & Khomh, F. (2025). LLMs and Stack Overflow discussions: Reliability, impact, and challenges. Journal of Systems and Software, 230, 112541 (21 pages). Lien externe

Degoot, A., Koné, I., Baichoo, S., Ngungu, M., Liku, N., Kumuthini, J., Nakatumba-Nabende, J., Khomh, F., & Bah, B. (2025). Health data issues in Africa: time for digitization, standardization and harmonization. Nature Communications, 16(1), 4 pages. Lien externe

F

Foalem, P. L., Da Silva, L. M. P., Khomh, F., Li, H., & Merlo, E. (2025). Logging requirement for continuous auditing of responsible machine learning-based applications. Empirical Software Engineering, 30(3), 97 (37 pages). Lien externe

J

Jamshidi, S., Amirnia, A., Nikanjam, A., Wazed Nafi, K., Khomh, F., & Keivanpour, S. (2025). Self-adaptive cyber defense for sustainable IoT: A DRL-based IDS optimizing security and energy efficiency. Journal of Network and Computer Applications, 104176. Lien externe

Jamshidi, S., Nikanjam, A., Wazed Nafi, K., & Khomh, F. (août 2025). Deep Reinforcement Learning-Based Intrusion Detection System: Defending Edge Gateways Against Mirai and Gafgyt [Communication écrite]. 12th International Conference on Future Internet of Things and Cloud (FiCloud 2025), Istanbul, Turkiye. Lien externe

Jamshidi, S., Nikanjam, A., Wazed Nafi, K., & Khomh, F. (juillet 2025). A Dynamic Security Pattern Selection Framework Using Deep Reinforcement Learning [Communication écrite]. International Conference on Software Services Engineering (SSE 2025), Helsinki, Finland. Lien externe

Jamshidi, S., Nikanjam, A., Wazed Nafi, K., & Khomh, F. (2025). Understanding the impact of IoT security patterns on CPU usage and energy consumption: a dynamic approach for selecting patterns with deep reinforcement learning. International Journal of Information Security, 24(2), 40 pages. Lien externe

Jamshidi, S., Nikanjam, A., Wazed Nafi, K., Khomh, F., & Rasta, R. (2025). Application of deep reinforcement learning for intrusion detection in Internet of Things: A systematic review. Internet of Things, 31, 101531 (29 pages). Lien externe

Jamshidi, S., Wazed Nafi, K., Nikanjam, A., & Khomh, F. (2025). Evaluating machine learning-driven intrusion detection systems in IoT: Performance and energy consumption. Computers & Industrial Engineering, 204, 111103 (17 pages). Lien externe

K

Kan, V., L. N. U., M., Berhe, S., Kari, C., Maynard, M., & Khomh, F. (2025). Automated UML visualization of software ecosystems: tracking versions, dependencies, and security updates. [Autre type de communication de conférence]. Procedia Computer Science, 257, 834-841. Présentée à 16th International Conference on Ambient Systems, Networks and Technologies Networks (ANT) / 8th International Conference on Emerging Data and Industry 4.0 (EDI40), Patras, Greece. Disponible

L

Liu, Y., Foundjem, A. T., Khomh, F., & Li, H. (2025). Adversarial attack classification and robustness testing for large language models for code. Empirical Software Engineering, 30(5). Lien externe

M

Majdinasab, V., Nikanjam, A., & Khomh, F. (2025). DeepCodeProbe: Evaluating Code Representation Quality in Models Trained on Code. Empirical Software Engineering, 30(6), 169 (53 pages). Lien externe

Majidi, F., Khomh, F., Li, H., & Nikanjam, A. (2025). An efficient model maintenance approach for MLOps. Empirical Software Engineering, 31(1), 48 pages. Lien externe

Manke, R., Wardat, M., Khomh, F., & Rajan, H. (avril 2025). Mock Deep Testing: Toward Separate Development of Data and Models for Deep Learning [Communication écrite]. 47th International Conference on Software Engineering (ICSE 2025), Ottawa, ON, Canada. Lien externe

Merzouk, M. A., Beurier, E., Yaich, R., Boulahia Cuppens, N., Cuppens, F., & Khomh, F. (juin 2025). Diffusion-Based Adversarial Purification for Intrusion Detection [Communication écrite]. 39th IFIP WG 11.3 Annual Conference on Data and Applications Security and Privacy (DBSec 2025), Gjøvik, Norway. Publié dans Lecture notes in computer science. Lien externe

N

Njoku, A. O., Li, H., & Khomh, F. (mai 2025). Kernel-Level Event-Based Performance Anomaly Detection in Software Systems under Varying Load Conditions [Communication écrite]. 16th International Conference on Performance Engineering (ICPE 2025), Toronto, ON, Canada. Lien externe

Nouwou Mindom, P. S., Da Silva, L. M. P., Nikanjam, A., & Khomh, F. (2025). Continuously Learning Bug Locations. ACM Transactions on Software Engineering and Methodology. Lien externe

O

Openja, M., Arcaini, P., Khomh, F., & Ishikawa, F. (2025). FairFLRep: Fairness aware fault localization and repair of Deep Neural Networks. ACM Transactions on Software Engineering and Methodology, 64 pages. Lien externe

S

Shah, M. B., Masudur Rahman, M., & Khomh, F. (2025). Towards understanding the impact of data bugs on deep learning models in software engineering. Empirical Software Engineering, 30(6), 168 (47 pages). Lien externe

Shahedi, K., Lamothe, M., Khomh, F., & Li, H. (avril 2025). JPerfEvo: A Tool for Tracking Method-Level Performance Changes in Java Projects [Communication écrite]. 22nd International Conference on Mining Software Repositories (MSR 2025), Ottawa, ON, Canada. Lien externe

Shahedi, K., Li, H., Lamothe, M., & Khomh, F. (2025). Tracing Optimization for Performance Modeling and Regression Detection. ACM Transactions on Software Engineering and Methodology. Lien externe

T

Tambon, F., Moradidakhel, A., Nikanjam, A., Khomh, F., Desmarais, M. C., & Antoniol, G. (2025). Bugs in large language models generated code: an empirical study. Empirical Software Engineering, 30(3), 48 pages. Lien externe

Tambon, F., Nikanjam, A., Zid, C., Khomh, F., & Antoniol, G. (2025). TaskEval: Assessing Difficulty of Code Generation Tasks for Large Language Models. ACM Transactions on Software Engineering and Methodology. Lien externe

Tantithamthavorn, C. K., Palomba, F., Khomh, F., & Chua, J. J. (2025). MLOps, LLMOps, FMOps, and beyond. IEEE Software, 42(1), 26-32. Lien externe

V

Veed, S. P., Daftary, S. M., Singh, B., Rudra, M., Berhe, S., Maynard, M., & Khomh, F. (février 2025). IoT Software Updates: User Perspectives in the Context of NIST IR 8259A [Communication écrite]. Workshop on Security and Privacy in Standardized IoT (SDIoTSec 2025), San Diego, CA, USA (5 pages). Lien externe

Verdet, A., Hamdaqa, M., Da Silva, L. M. P., & Khomh, F. (2025). Assessing the adoption of security policies by developers in terraform across different cloud providers. Empirical Software Engineering, 30(3). Disponible

Verdet, A., Hamdaqa, M., Da Silva, L. M. P., & Khomh, F. (2025). Erratum: Assessing the adoption of security policies by developers in terraform across different cloud providers. Empirical Software Engineering, 30(6), 74 (1 page). Lien externe

W

Wu, X., Li, H., & Khomh, F. (2025). What information contributes to log-based anomaly detection? Insights from a configurable transformer-based approach. Automated Software Engineering, 32(2), 29 pages. Lien externe

Liste produite: Sun Dec 7 02:22:36 2025 EST.