<  Retour au portail Polytechnique Montréal

Documents publiés en "2024"

Monter d'un niveau
Pour citer ou exporter [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
Grouper par: Auteurs ou autrices | Département | Sous-type de document | Aucun groupement
Aller à : K | M | T
Nombre de documents: 9

K

Kouemo Ngassom, S., Moradidakhel, A., Tambon, F., & Khomh, F. (juillet 2024). Chain of Targeted Verification Questions to Improve the Reliability of Code Generated by LLMs [Communication écrite]. 1st ACM International Conference on AI-Powered Software (ALWARE 2024), Porto de Galinhas, Brazil. Lien externe

M

Mahu, A.-M., Singh, A., Tambon, F., Ouellette, B., Delisle, J.-F., Paul, T., Khomh, F., Marois, A., & Doyon-Poulin, P. (juin 2024). Validation of vigilance decline capability in a simulated test environment: a preliminary step towards neuroadaptive control [Communication écrite]. 15th International Conference on Applied Human Factors and Ergonomics (AHFE 2024), Nice, France. Disponible

Morovati, M. M., Nikanjam, A., Tambon, F., Khomh, F., & Jiang, Z. M. (2024). Bug characterization in machine learning-based systems. Empirical Software Engineering, 29(1), 14 (29 pages). Lien externe

Morovati, M. M., Tambon, F., Taraghi, M., Nikanjam, A., & Khomh, F. (2024). Common challenges of deep reinforcement learning applications development: an empirical study. Empirical Software Engineering, 29, 95 (33 pages). Lien externe

T

Tambon, F. (2024). GIST: Generated Inputs Sets Transferability in Deep Learning (Part 2) [Ensemble de données]. Lien externe

Tambon, F. (2024). Who Tests the Testers? Assessing the Effectiveness and Trustworthiness of Deep Learning Model Testing Techniques [Thèse de doctorat, Polytechnique Montréal]. Disponible

Tambon, F., Khomh, F., & Antoniol, G. (2024). GIST : Generated Inputs Sets Transferability in Deep Learning. ACM Transactions on Software Engineering and Methodology, 33(8), 214 (38 pages). Lien externe

Tambon, F., Nikanjam, A., An, L., Khomh, F., & Antoniol, G. (2024). Silent bugs in deep learning frameworks: an empirical study of Keras and TensorFlow. Empirical Software Engineering, 29(1), 10 (34 pages). Lien externe

Taraghi, M., Dorcelus, G., Foundjem, A. T., Tambon, F., & Khomh, F. (mars 2024). Deep Learning Model Reuse in the HuggingFace Community: Challenges, Benefit and Trends [Communication écrite]. 31st IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER 2024), Rovaniemi, Finland. Lien externe

Liste produite: Thu Jan 1 01:56:56 2026 EST.