<  Retour au portail Polytechnique Montréal

Documents publiés en "2024"

Monter d'un niveau
Pour citer ou exporter [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
Grouper par: Auteurs ou autrices | Département | Sous-type de document | Aucun groupement
Nombre de documents: 13

Article de revue

Côté, P.-O., Nikanjam, A., Ahmed, N., Humeniuk, D., & Khomh, F. (2024). Data cleaning and machine learning: a systematic literature review. Automated Software Engineering, 31(2), 54 (75 pages). Lien externe

Côté, P.-O., Nikanjam, A., Bouchoucha, R., Basta, I., Abidi, M., & Khomh, F. (2024). Quality issues in machine learning software systems. Empirical Software Engineering, 29(6), 149 (47 pages). Lien externe

Majdinasab, V., Nikanjam, A., & Khomh, F. (2024). Trained Without My Consent: Detecting Code Inclusion In Language Models Trained on Code. ACM Transactions on Software Engineering and Methodology. Lien externe

Mindom, P. S. N., Nikanjam, A., & Khomh, F. (2024). Harnessing pre-trained generalist agents for software engineering tasks. Empirical Software Engineering, 30(1). Lien externe

Moradidakhel, A., Nikanjam, A., Majdinasab, V., Khomh, F., & Desmarais, M. C. (2024). Effective test generation using pre-trained Large Language Models and mutation testing. Information and Software Technology, 171, 107468 (17 pages). Lien externe

Morovati, M. M., Nikanjam, A., Tambon, F., Khomh, F., & Jiang, Z. M. (2024). Bug characterization in machine learning-based systems. Empirical Software Engineering, 29(1), 14 (29 pages). Lien externe

Morovati, M. M., Tambon, F., Taraghi, M., Nikanjam, A., & Khomh, F. (2024). Common challenges of deep reinforcement learning applications development: an empirical study. Empirical Software Engineering, 29, 95 (33 pages). Lien externe

Tambon, F., Nikanjam, A., An, L., Khomh, F., & Antoniol, G. (2024). Silent bugs in deep learning frameworks: an empirical study of Keras and TensorFlow. Empirical Software Engineering, 29(1), 10 (34 pages). Lien externe

Communication écrite

Bouchoucha, R., Haj Yahmed, A., Patil, D., Rajendran, J., Nikanjam, A., Anbil Parthipan, S. C., & Khomh, F. (octobre 2024). Toward Debugging Deep Reinforcement Learning Programs with RLExplorer [Communication écrite]. IEEE International Conference on Software Maintenance and Evolution (ICSME 2024), Flagstaff, AZ, USA. Lien externe

Islam, M. R., Roy, B., Hassan, M., & Nikanjam, A. (novembre 2024). Just-in-Time and Real-Time Bug-Inducing Commit Prediction Using a Federated Learning Approach [Communication écrite]. 34th International Conference on Collaborative Advances in Software and COmputiNg (CASCON 2024), Toronto, ON, Canada. Lien externe

Jamshidi, S., Amirnia, A., Nikanjam, A., & Khomh, F. (avril 2024). Enhancing Security and Energy Efficiency of Cyber-Physical Systems using Deep Reinforcement Learning [Communication écrite]. 15th International Conference on Ambient Systems, Networks and Technologies Networks (ANT 2024) / The 7th International Conference on Emerging Data and Industry 4.0 (EDI40 2024), Hasselt, Belgium. Publié dans Procedia Computer Science, 238. Lien externe

Chapitre de livre

Moradidakhel, A., Nikanjam, A., Khomh, F., Desmarais, M. C., & Washizaki, H. (2024). Generative AI for Software Development: A Family of Studies on Code Generation. Dans Generative AI for Effective Software Development (p. 151-172). Lien externe

Moradidakhel, A., Nikanjam, A., Khomh, F., Desmarais, M. C., & Washizaki, H. (2024). An Overview on Large Language Models. Dans Generative AI for Effective Software Development (p. 3-21). Lien externe

Liste produite: Sat Dec 27 02:01:43 2025 EST.