<  Back to the Polytechnique Montréal portal

Items where Author is "Vorontsov, Eugene"

Up a level
Export as [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
Jump to: A | B | C | D | K | L | V
Number of items: 18.

A

Alefsen, M., Vorontsov, E., & Kadoury, S. (2023, October). M-GenSeg: Domain Adaptation for Target Modality Tumor Segmentation with Annotation-Efficient Supervision [Paper]. 26th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI 2023), Vancouver, BC, Canada. External link

Antonelli, M., Reinke, A., Bakas, S., Farahani, K., Kopp-Schneider, A., Landman, B. A., Litjens, G., Menze, B., Ronneberger, O., Summers, R. M., van Ginneken, B., Bilello, M., Bilic, P., Christ, P. F., Do, R. K. G., Gollub, M. J., Heckers, S. H., Huisman, H., Jarnagin, W. R., ... Cardoso, M. J. (2022). The medical segmentation decathlon. Nature Communications, 13(1), 4128 (13 pages). Available

Anbil Parthipan, S. C., Sankar, C., Vorontsov, E., Kahou, S. E., & Bengio, Y. (2019). Towards Non-Saturating Recurrent Units for Modelling Long-Term Dependencies. AAAI Conference on Artificial Intelligence, 33(1), 3280-3287. External link

B

Bilic, P., Christ, P., Li, H. B., Vorontsov, E., Ben-Cohen, A., Kaissis, G., Szeskin, A., Jacobs, C., Mamani, G. E. H., Chartrand, G., Lohöfer, F., Holch, J. W., Sommer, W., Hofmann, F., Hostettler, A., Lev-Cohain, N., Drozdzal, M., Amitai, M. M., Vivanti, R., ... Menze, B. (2023). The Liver Tumor Segmentation Benchmark (LiTS). Medical Image Analysis, 84, 102680 (24 pages). External link

C

Cros, S., Bouttier, H., Nguyen-Tan, P. F., Vorontsov, E., & Kadoury, S. (2022). Combining dense elements with attention mechanisms for 3D radiotherapy dose prediction on head and neck cancers. Journal of Applied Clinical Medical Physics, 23(8), e13655 (15 pages). External link

Cros, S., Vorontsov, E., & Kadoury, S. (2021, April). Managing Class Imbalance in Multi-Organ CT Segmentation in Head and Neck Cancer Patients [Paper]. 18th IEEE International Symposium on Biomedical Imaging (ISBI 2021), Nice, France. External link

Chartrand, G., Cheng, P. M., Vorontsov, E., Drozdzal, M., Turcotte, S., Pal, C. J., Kadoury, S., & Tang, A. (2017). Deep Learning: A Primer for Radiologists. RadioGraphics, 37(7), 2113-2131. External link

D

de Boisredon d’Assier, M. A., Portafaix, A., Vorontsov, E., Le, W. T., & Kadoury, S. (2024). Image-level supervision and self-training for transformer-based cross-modality tumor segmentation. Medical Image Analysis, 97, 103287 (16 pages). External link

Drozdzal, M., Chartrand, G., Vorontsov, E., Shakeri, M., Di Jorio, L., Tang, A., Romero, A., Bengio, Y., Pal, C. J., & Kadoury, S. (2018). Learning normalized inputs for iterative estimation in medical image segmentation. Medical Image Analysis, 44, 1-13. External link

Drozdzal, M., Vorontsov, E., Chartrand, G., Kadoury, S., & Pal, C. J. (2016, October). The Importance of Skip Connections in Biomedical Image Segmentation [Paper]. 2nd International Workshop on Deep Learning in Medical Image Analysis (DLMIA 2016), held in conjunction with MICCAI 2016, Athens, Greece. External link

K

Kerg, G., Goyette, K., Touzel, M. P., Gidel, G., Vorontsov, E., Bengio, Y., & Lajoie, G. (2019, December). Non-normal Recurrent Neural Network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics [Paper]. 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, B.-C.. External link

L

Le, W. T., Vorontsov, E., Romero, F. P., Seddik, L., Elsharief, M. M., Nguyen-Tan, P. F., Roberge, D., Bahig, H., & Kadoury, S. (2022). Cross-institutional outcome prediction for head and neck cancer patients using self-attention neural networks. Scientific Reports, 12(1), 17 pages. External link

V

Vorontsov, E., Molchanov, P., Gazda, M., Beckham, C., Kautz, J., & Kadoury, S. (2022). Towards annotation-efficient segmentation via image-to-image translation. Medical Image Analysis, 82, 102624 (16 pages). External link

Vorontsov, E., & Kadoury, S. (2021, October). Label noise in segmentation networks: Mitigation must deal with bias [Paper]. 1st MICCAI Workshop on Data Augmentation, Labelling and Imperfections (DALI 2021). External link

Vorontsov, E. (2020). On Medical Image Segmentation and on Modeling Long Term Dependencies [Ph.D. thesis, Polytechnique Montréal]. Available

Vorontsov, E., Cerny, M., Régnier, P., Di Jorio, L., Pal, C. J., Lapointe, R., Vandenbroucke-Menu, F., Turcotte, S., Kadoury, S., & Tang, A. (2019). Deep learning for automated segmentation of liver lesions at cCT in patients with colorectal cancer liver metastases. Radiology: Artificial Intelligence, 1(2), 180014. External link

Vorontsov, E., Tang, A., Pal, C. J., & Kadoury, S. (2018, April). Liver lesion segmentation informed by joint liver segmentation [Paper]. 15th IEEE International Symposium on Biomedical Imaging (ISBI 2018), Washington, D.C.. External link

Vorontsov, E., Abi-Jaoudeh, N., & Kadoury, S. (2014). Metastatic liver tumor segmentation using texture-based omni-directional deformable surface models. In Abdominal Imaging. Computational and Clinical Applications : 6th International Workshop (ABDI 2014) held in conjunction with (MICCAI 2014) (Vol. 8676, pp. 74-83). External link

List generated on: Tue Mar 25 06:35:38 2025 EDT