![]() | Up a level |
This graph maps the connections between all the collaborators of {}'s publications listed on this page.
Each link represents a collaboration on the same publication. The thickness of the link represents the number of collaborations.
Use the mouse wheel or scroll gestures to zoom into the graph.
You can click on the nodes and links to highlight them and move the nodes by dragging them.
Hold down the "Ctrl" key or the "⌘" key while clicking on the nodes to open the list of this person's publications.
A word cloud is a visual representation of the most frequently used words in a text or a set of texts. The words appear in different sizes, with the size of each word being proportional to its frequency of occurrence in the text. The more frequently a word is used, the larger it appears in the word cloud. This technique allows for a quick visualization of the most important themes and concepts in a text.
In the context of this page, the word cloud was generated from the publications of the author {}. The words in this cloud come from the titles, abstracts, and keywords of the author's articles and research papers. By analyzing this word cloud, you can get an overview of the most recurring and significant topics and research areas in the author's work.
The word cloud is a useful tool for identifying trends and main themes in a corpus of texts, thus facilitating the understanding and analysis of content in a visual and intuitive way.
Gannot, I., Li, J., Qu, H., & Skorobogatiy, M. A. (2016, February). Detection of analyte refractive index and concentration using liquid-core photonic Bragg fibers [Paper]. Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications XVI, San Francisco, California. External link
Guerboukha, H., Markov, A., Qu, H., & Skorobogatiy, M. A. (2015, June). Dynamic measurements at terahertz frequencies with a fast rotary delay line [Paper]. Photonics North 2015, Ottawa, ON, Canada. External link
Li, J., Qu, H., & Wang, J. (2020). Photonic Bragg waveguide platform for multichannel resonant sensing applications in the THz range. Biomedical Optics Express, 11(5), 2476-2489. External link
Lu, X., Qu, H., & Skorobogatiy, M. A. (2019, August). Piezoelectric Micro- and Nanostructured Fibers Fabricated from Thermoplastic Nanocomposites Using a Fiber Drawing Technique: Comparative Study and Potential Applications [Abstract]. 28th International Materials Research Congress, D7, Materials and Technologies for Energy Conversion Saving and Storage (MATECSS), Cancún, México. External link
Lu, X., Qu, H., & Skorobogatiy, M. A. (2018). Piezoelectric Micro- and Nanostructured Fibers Fabricated from Thermoplastic Nanocomposites Using a Fiber Drawing Technique: Comparative Study and Potential Applications. ECS Transactions, 86(16), 57-69. External link
Lu, X., Qu, H., & Skorobogatiy, M. A. (2018, May). Piezoelectric microstructured fibers via drawing of multimaterial preforms [Paper]. Energy Harvesting and Storage : Materials, Devices and Applications VIII, Orlando, FL (10 pages). External link
Lu, X., Qu, H., & Skorobogatiy, M. A. (2017). Piezoelectric microstructured fibers via drawing of multimaterial preforms. Scientific Reports, 7(1), 2907 (12 pages). Available
Lu, X., Qu, H., & Skorobogatiy, M. A. (2017, April). Smart fibers for textile-based micro-generators and compliant energy storage [Paper]. Materials Research Society Spring Meeting & Exhibit (MRS 2017), Phoenix, Arizona. External link
Li, J., Qu, H., & Skorobogatiy, M. A. (2017, May). Squeezed hollow core photonic Bragg fiber for surface sensing applications [Paper]. CLEO: Applications and Technology (CLEO_AT 2017), San Jose, CA, United states. External link
Li, J., Qu, H., & Skorobogatiy, M. A. (2016). Squeezed hollow-core photonic Bragg fiber for surface sensing applications. Optics Express, 24(14), 15687-15701. External link
Li, J., Qu, H., & Skorobogatiy, M. A. (2015). Simultaneous monitoring the real and imaginary parts of the analyte refractive index using liquid-core photonic bandgap Bragg fibers. Optics Express, 23(18), 22963-22976. External link
Ma, T., Nallapan, K., Guerboukha, H., Skorobogatiy, M. A., & Qu, H. (2017, May). Dispersion Compensation in Terahertz Communication Links Using Metallized 3D Printed Hollow Core Waveguide Bragg Gratings [Abstract]. CLEO: Science and Innovations 2017, San Jose, California. External link
Markov, A., Gorgutsa, S., Qu, H., & Skorobogatiy, M. A. (2013, June). Plasmonic two-wire terahertz fibers with highly porous dielectric support [Paper]. CLEO 2013. Conference on lasers and electro optics, San Jose, CA, USA. External link
Qu, H., Lu, X., & Skorobogatiy, M. A. (2018). All-solid flexible fiber-shaped lithium ion batteries. Journal of The Electrochemical Society, 165(3), A688-A695. External link
Qu, H., & Skorobogatiy, M. A. (2017). Optics on the go: Active-color-changing textiles. Optics & Photonics News (September), 36-41. External link
Qu, H., Hou, J., Lu, X., Tang, Y., Semenikhin, O., & Skorobogatiy, M. A. (2017, April). Thin flexible lithium ion battery featuring graphite paper based current collectors with enhanced conductivity [Poster]. Materials Research Society Spring Meeting & Exhibit (MRS 2017), Phoenix, Arizona. Unavailable
Qu, H., Hou, J., Tang, Y., Semenikhin, O., & Skorobogatiy, M. A. (2017). Thin flexible lithium-ion battery featuring graphite paper based current collectors with enhanced conductivity. Canadian Journal of Chemistry, 95(2), 169-173. External link
Qu, H., Skorobogatiy, M. A., Deck-Leger, Z. L., & Caloz, C. (2016, May). Frequency generation in a moving 2-dimensional photonic crystal [Paper]. Photonic North (PN 2016), Québec City. Unavailable
Qu, H., Deck-Léger, Z.-L., Caloz, C., & Skorobogatiy, M. A. (2016). Frequency generation in moving photonic crystals. Journal of the Optical Society of America B: Optical Physics, 33(8), 1616-1626. External link
Qu, H., Semenikhin, O., & Skorobogatiy, M. A. (2015). Flexible fiber batteries for applications in smart textiles. Smart Materials and Structures, 24(2). External link
Qu, H., Li, J., & Skorobogatiy, M. A. (2015). Photonic bandgap fibers-a roadway to all-fiber refractometer systems for monitoring of liquid analytes. In Optofluidics, Sensors and Actuators in Microstructured Optical Fibers (pp. 247-283). External link
Qu, H. (2013). All Photonic Bandgap Bragg Fiber Refractometers [Ph.D. thesis, École Polytechnique de Montréal]. Available
Qu, H., Brastaviceanu, T., Bergeron, F., Olesik, J., Pavlov, I., & Skorobogatiy, M. A. (2013, September). Micro-displacement sensors based on plastic photonic bandgap Bragg fibers [Paper]. IPC 2013. 26th IEEE Photonics Conference, Bellevue, WA, United states. External link
Qu, H., Brastaviceanu, T., Bergeron, F., Olesik, J., Pavlov, I., Ishigure, T., & Skorobogatiy, M. A. (2013). Photonic bandgap Bragg fiber sensors for bending/displacement detection. Applied Optics, 52(25), 6344-6349. External link
Qu, H., Ung, B., Rozé, M., & Skorobogatiy, M. A. (2012). All Photonic Bandgap Fiber Spectroscopic System for Detection of Refractive Index Changes in Aqueous Analytes. Sensors and Actuators B: Chemical, 161(1), 235-243. External link
Qu, H., & Skorobogatiy, M. A. (2012, June). All-photonic-bandgap-fiber sensor for detection of liquid refractive index3 [Paper]. Photonics North 2012, Montréal, Québec. Unavailable
Qu, H., & Skorobogatiy, M. A. (2012, June). Liquid-core low-refractive index-refractive index-contrast Bragg fiber sensor [Paper]. Photonics North 2012, Montréal, Québec. Unavailable
Qu, H., Ung, B., & Skorobogatiy, M. A. (2012, May). Photonic bandgap fiber bundle spectrometer [Paper]. 2012 Conference on Lasers and Electro-Optics, CLEO 2012, San Jose, CA, United states (2 pages). External link
Qu, H., & Skorobogatiy, M. A. (2012). Resonant Bio- and Chemical Sensors Using Low-Refractive-Index-Contrast Liquid-Core Bragg Fibers. Sensors and Actuators B: Chemical, 161(1), 261-268. External link
Qu, H., & Skorobogatiy, M. A. (2011, October). All-polymer photonic bandgap Bragg fibers for bio-chemical sensors and spectrometers [Paper]. 17th Microoptics Conference, MOC'11, Sendai, Japan. External link
Qu, H., Ung, B., & Skorobogatiy, M. A. (2011, June). Liquid filled hollow core photonic bandgap fiber sensor [Paper]. Optical Sensors, Toronto, Canada. External link
Qu, H., & Skorobogatiy, M. A. (2011). Liquid-core low-refractive-index-contrast Bragg fiber sensor. Applied Physics Letters, 98(20). External link
Qu, H., Ung, B., Syed, I., Guo, N., & Skorobogatiy, M. A. (2010). Photonic Bandgap Fiber Bundle Spectrometer. Applied Optics, 49(25), 4791-4800. External link
Skorobogatiy, M. A., Qu, H., & Lu, X. (2018). Solid Electrolyte, Flexible Li-ion Fiber Batteries for Compliant Energy Storage and Wearable Applications. Meeting abstracts (Electrochemical Society. CD-ROM), MA2018-02(1), 61-61. External link
Soskind, Y. G., Olson, C., Guerboukha, H., Qu, H., & Skorobogatiy, M. A. (2016, February). Linear rotary optical delay lines [Paper]. Photonic Instrumentation Engineering III, San Francisco, California. External link
Skorobogatiy, M. A., & Qu, H. (2014, June). An all-fiber spectrometer using deconvolution of intensity images at the output of photonic bandgap fiber bundle [Paper]. Computational Optical Sensing and Imaging 2014, Kohala Coast, Hawaii, USA. Published in Classical Optics 2014. External link
Skorobogatiy, M. A., & Qu, H. (2014, June). Design of the Curvilinear Reflectors for Linear Rotary Optical Delay Lines [Paper]. International Optical Design Conference 2014, Kohala Coast, Hawaii, USA. Published in Classical Optics 2014. External link
Yetisen, A. K., Qu, H., Manbachi, A., Butt, H., Dokmeci, M. R., Hinestroza, J. P., Skorobogatiy, M. A., Khademhosseini, A., & Yun, S. H. (2016). Nanotechnology in textiles. ACS Nano, 10(3), 3042-3068. External link