<  Retour au portail Polytechnique Montréal

Documents dont l'auteur est "Laberge, Gabriel"

Monter d'un niveau
Pour citer ou exporter [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
Grouper par: Auteurs ou autrices | Date de publication | Sous-type de document | Aucun groupement
Aller à : G | L | O | R | T
Nombre de documents: 9

G

Goyette, P.-A., Boulais, É., Normandeau, F., Laberge, G., Juncker, D., & Gervais, T. (2019). Microfluidic multipoles theory and applications. Nature Communications, 10(1), 1781 (10 pages). Disponible

Goyette, P.-A., Boulais, E., Normandeau, F., Laberge, G., Juncker, D., & Gervais, T. (novembre 2018). Reconfigurable multipolar open-space microfluidics [Communication écrite]. 22nd International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS 2018), Kaohsiung, Taiwan. Non disponible

L

Laberge, G., Pequignot, Y., Marchand, M., & Khomh, F. (mai 2024). Tackling the XAI Disagreement Problem with Regional Explanations [Communication écrite]. 27th International Conference on Artificial Intelligence and Statistics (AISTATS 2024), Valencia, Spain. Lien externe

Laberge, G., Pequignot, Y., Mathieu, A., Khomh, F., & Marchand, M. (2023). Partial Order in Chaos: Consensus on Feature Attributions in the Rashomon Set. Journal of Machine Learning Research, 24(364), 50 pages. Lien externe

Laberge, G. (2020). Statistical Analysis of Spherical Harmonics Representations of Soil Particles [Mémoire de maîtrise, Polytechnique Montréal]. Disponible

Laberge, G., Shirzad, S., Diehl, P., Kaiser, H., Prudhomme, S., & Lemoine, A. (novembre 2019). Scheduling Optimization of Parallel Linear Algebra Algorithms Using Supervised Learning [Communication écrite]. IEEE/ACM Workshop on Machine Learning in High Performance Computing Environments (MLHPC 2019), Denver, CO, USA. Lien externe

O

Openja, M., Laberge, G., & Khomh, F. (2024). Detection and evaluation of bias-inducing features in machine learning. Empirical Software Engineering, 29(1), 71 pages. Lien externe

R

Roy, S., Laberge, G., Roy, B., Khomh, F., Nikanjam, A., & Mondal, S. (octobre 2022). Why Don't XAI Techniques Agree? Characterizing the Disagreements Between Post-hoc Explanations of Defect Predictions [Communication écrite]. IEEE International Conference on Software Maintenance and Evolution (ICSME 2022), Limassol, Cyprus. Lien externe

T

Tambon, F., Laberge, G., An, L., Nikanjam, A., Mindom, P. S. N., Pequignot, Y., Khomh, F., Antoniol, G., Merlo, E., & Laviolette, F. (2022). How to certify machine learning based safety-critical systems? A systematic literature review. Automated Software Engineering, 29(2). Lien externe

Liste produite: Mon Nov 18 04:17:47 2024 EST.