Up a level |
This graph maps the connections between all the collaborators of {}'s publications listed on this page.
Each link represents a collaboration on the same publication. The thickness of the link represents the number of collaborations.
Use the mouse wheel or scroll gestures to zoom into the graph.
You can click on the nodes and links to highlight them and move the nodes by dragging them.
Hold down the "Ctrl" key or the "⌘" key while clicking on the nodes to open the list of this person's publications.
Goyette, P.-A., Boulais, É., Normandeau, F., Laberge, G., Juncker, D., & Gervais, T. (2019). Microfluidic multipoles theory and applications. Nature Communications, 10(1), 1781 (10 pages). Available
Goyette, P.-A., Boulais, E., Normandeau, F., Laberge, G., Juncker, D., & Gervais, T. (2018, November). Reconfigurable multipolar open-space microfluidics [Paper]. 22nd International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS 2018), Kaohsiung, Taiwan. Unavailable
Laberge, G., Pequignot, Y., Marchand, M., & Khomh, F. (2024, May). Tackling the XAI Disagreement Problem with Regional Explanations [Paper]. 27th International Conference on Artificial Intelligence and Statistics (AISTATS 2024), Valencia, Spain. External link
Laberge, G., Pequignot, Y., Mathieu, A., Khomh, F., & Marchand, M. (2023). Partial Order in Chaos: Consensus on Feature Attributions in the Rashomon Set. Journal of Machine Learning Research, 24(364), 50 pages. External link
Laberge, G. (2020). Statistical Analysis of Spherical Harmonics Representations of Soil Particles [Master's thesis, Polytechnique Montréal]. Available
Laberge, G., Shirzad, S., Diehl, P., Kaiser, H., Prudhomme, S., & Lemoine, A. (2019, November). Scheduling Optimization of Parallel Linear Algebra Algorithms Using Supervised Learning [Paper]. IEEE/ACM Workshop on Machine Learning in High Performance Computing Environments (MLHPC 2019), Denver, CO, USA. External link
Oueslati, K., Laberge, G., Lamothe, M., & Khomh, F. (2024). Mining Action Rules for Defect Reduction Planning. Proceedings of the ACM on Software Engineering, 1(FSE), 2309-2331. External link
Openja, M., Laberge, G., & Khomh, F. (2024). Detection and evaluation of bias-inducing features in machine learning. Empirical Software Engineering, 29(1), 71 pages. External link
Roy, S., Laberge, G., Roy, B., Khomh, F., Nikanjam, A., & Mondal, S. (2022, October). Why Don't XAI Techniques Agree? Characterizing the Disagreements Between Post-hoc Explanations of Defect Predictions [Paper]. IEEE International Conference on Software Maintenance and Evolution (ICSME 2022), Limassol, Cyprus. External link
Tambon, F., Laberge, G., An, L., Nikanjam, A., Mindom, P. S. N., Pequignot, Y., Khomh, F., Antoniol, G., Merlo, E., & Laviolette, F. (2022). How to certify machine learning based safety-critical systems? A systematic literature review. Automated Software Engineering, 29(2). External link