<  Back to the Polytechnique Montréal portal

Items where Author is "Ben Braiek, Houssem"

Up a level
Export as [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
Jump to: B | J | N | Y
Number of items: 14.

B

Ben Braiek, H., & Khomh, F. (2023). Testing Feedforward Neural Networks Training Programs. ACM Transactions on Software Engineering and Methodology, 32(4), 1-61. External link

Ben Braiek, H. (2022). Debugging and Testing Deep Learning Software Systems [Ph.D. thesis, Polytechnique Montréal]. Available

Ben Braiek, H., Reid, T., & Khomh, F. (2022). Physics-guided adversarial machine learning for aircraft systems simulation. IEEE Transactions on Reliability, 72(3), 1161-1175. External link

Ben Braiek, H., Tfaily, A., Khomh, F., Reid, T., & Guida, C. (2022, October). SmOOD: Smoothness-based Out-of-Distribution Detection Approach for Surrogate Neural Networks in Aircraft Design [Paper]. 37th IEEE/ACM International Conference on Automated Software Engineering (ASE 2022), Rochester, MI, USA (13 pages). External link

Ben Braiek, H., & Khomh, F. (2020). On testing machine learning programs. Journal of Systems and Software, 164, 110542 (18 pages). External link

Ben Braiek, H. (2019). Towards Debugging and Testing Deep Learning Systems [Master's thesis, Polytechnique Montréal]. Available

Ben Braiek, H., & Khomh, F. (2019, September). DeepEvolution: A Search-Based Testing Approach for Deep Neural Networks [Paper]. IEEE International Conference on Software Maintenance and Evolution (ICSME 2019), Cleveland, OH, United states. External link

Ben Braiek, H., & Khomh, F. (2019, July). TFCheck : A TensorFlow Library for Detecting Training Issues in Neural Network Programs [Paper]. 19th IEEE International Conference on Software Quality, Reliability and Security (QRS 2019), Sofia, Bulgaria. External link

Ben Braiek, H., Khomh, F., & Adams, B. (2018, May). The open-closed principle of modern machine learning frameworks [Paper]. 15th International Conference on Mining Software Repositories (MSR 2018), Gothenburg, Sweden. External link

J

Jebnoun, H., Ben Braiek, H., Rahman, M. M., & Khomh, F. (2020, June). The scent of deep learning code : an empirical study [Paper]. 17th International Conference on Mining Software Repositories (MSR 2020), Seoul, Republic of Korea. External link

N

Nikanjam, A., Ben Braiek, H., Morovati, M. M., & Khomh, F. (2022). Automatic Fault Detection for Deep Learning Programs Using Graph Transformations. ACM Transactions on Software Engineering and Methodology, 31(1), 1-27. External link

Nikanjam, A., Morovati, M. M., Khomh, F., & Ben Braiek, H. (2022). Faults in deep reinforcement learning programs: a taxonomy and a detection approach. Automated Software Engineering, 29(1), 8 (32 pages). External link

Y

Yahmed, A. H., Bouchoucha, R., Ben Braiek, H., & Khomh, F. (2023, September). An Intentional Forgetting-Driven Self-Healing Method for Deep Reinforcement Learning Systems [Paper]. 38th IEEE/ACM International Conference on Automated Software Engineering (ASE 2023), Echternach, Luxembourg. External link

Yahmed, A. H., Ben Braiek, H., Khomh, F., Bouzidi, S., & Zaatour, R. (2022). DiverGet: a Search-Based Software Testing approach for Deep Neural Network Quantization assessment. Empirical Software Engineering, 27(7), 193 (32 pages). External link

List generated on: Thu May 23 18:45:15 2024 EDT