Amir Haider, MuhibUr Rahman, Tayyaba Khan, Muhammad Tabish Niaz and Hyung Seok Kim
Article (2021)
Open Acess document in PolyPublie and at official publisher |
|
Open Access to the full text of this document Published Version Terms of Use: Creative Commons Attribution Download (1MB) |
Résumé
The 5G cellular network aims at providing three major services: Massive machine-type communication (mMTC), ultra-reliable low-latency communications (URLLC), and enhanced-mobile-broadband (eMBB). Among these services, the URLLC and eMBB require strict end-to-end latency of 1 ms while maintaining 99.999% reliability, and availability of extremely high data rates for the users, respectively. One of the critical challenges in meeting these requirements is to upgrade the existing optical fiber backhaul network interconnecting the base stations with a multigigabit capacity, low latency and very high reliability system. To address this issue, we have numerically analyzed 100 Gbit/s coherent optical orthogonal frequency division multiplexing (CO-OFDM) transmission performance over 400 km single-mode fiber (SMF) and 100 km of multi-mode fiber (MMF) links. The system is simulated over optically repeated and non-repeated SMF and MMF links. Coherent transmission is used, and the system is analyzed in a linear and non-linear regime. The system performance is quantified by bit error ratio (BER). Spectrally efficient and optimal transmission performance is achieved for 400 km SMF and 100 km MMF link. The results designate that MMF links can be employed beyond short reach applications by using them in the existing SMF infrastructure for long haul transmission. In particular, the proposed CO-OFDM system can be efficiently employed in 5G backhaul network. The multi-gigabit capacity and lower BER of the proposed system makes it a suitable candidate especially for the eMBB and URLLC requirements for 5G backhaul network.
Uncontrolled Keywords
CO-OFDM; coherent transmission; spectrally efficient; optical communication; optical networks; dispersion; eMBB; URLLC; 5G backhaul
Subjects: | 2500 Electrical and electronic engineering > 2500 Electrical and electronic engineering |
---|---|
Department: | Department of Electrical Engineering |
Funders: | National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT), Strengthening R&D Capability Program of Sejong University |
Grant number: | 2019R1A4A1023746, 2019R1F1A106079 |
PolyPublie URL: | https://publications.polymtl.ca/9460/ |
Journal Title: | Computers, Materials & Continua (vol. 67, no. 2) |
Publisher: | Tech Science Press |
DOI: | 10.32604/cmc.2021.015611 |
Official URL: | https://doi.org/10.32604/cmc.2021.015611 |
Date Deposited: | 15 Sep 2023 15:19 |
Last Modified: | 26 Sep 2024 13:18 |
Cite in APA 7: | Haider, A., Rahman, M.U., Khan, T., Tabish Niaz, M., & Seok Kim, H. (2021). Multi-Gigabit CO-OFDM System over SMF and MMF Links for 5G URLLC Backhaul Network. Computers, Materials & Continua, 67(2), 1747-1758. https://doi.org/10.32604/cmc.2021.015611 |
---|---|
Statistics
Total downloads
Downloads per month in the last year
Origin of downloads
Dimensions