<  Retour au portail Polytechnique Montréal

CNN2Gate: an implementation of convolutional neural networks inference on FPGAs with automated design space exploration

Alireza Ghaffari et Yvon Savaria

Article de revue (2020)

Document en libre accès dans PolyPublie et chez l'éditeur officiel
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: Creative Commons: Attribution (CC BY)
Télécharger (1MB)
Afficher le résumé
Cacher le résumé

Abstract

Convolutional Neural Networks (CNNs) have a major impact on our society, because of the numerous services they provide. These services include, but are not limited to image classification, video analysis, and speech recognition. Recently, the number of researches that utilize FPGAs to implement CNNs are increasing rapidly. This is due to the lower power consumption and easy reconfigurability that are offered by these platforms. Because of the research efforts put into topics, such as architecture, synthesis, and optimization, some new challenges are arising for integrating suitable hardware solutions to high-level machine learning software libraries. This paper introduces an integrated framework (CNN2Gate), which supports compilation of a CNN model for an FPGA target. CNN2Gate is capable of parsing CNN models from several popular high-level machine learning libraries, such as Keras, Pytorch, Caffe2, etc. CNN2Gate extracts computation flow of layers, in addition to weights and biases, and applies a “given” fixed-point quantization. Furthermore, it writes this information in the proper format for the FPGA vendor’s OpenCL synthesis tools that are then used to build and run the project on FPGA. CNN2Gate performs design-space exploration and fits the design on different FPGAs with limited logic resources automatically. This paper reports results of automatic synthesis and design-space exploration of AlexNet and VGG-16 on various Intel FPGA platforms.

Mots clés

automated high-level synthesis; Convolutional Neural Network (CNN); design-space exploration; FPGA; hardware optimization; hardware-aware FPGA fitter; Open Neural Network Exchange Format (ONNX); reinforcement learning; Register Transfer Level (RTL)

Sujet(s): 2500 Génie électrique et électronique > 2500 Génie électrique et électronique
2700 Technologie de l'information > 2700 Technologie de l'information
2700 Technologie de l'information > 2719 Architecture d'ordinateur et conception
Département: Département de génie électrique
Centre de recherche: Autre
Organismes subventionnaires: IVADO (Institut de Valorisation des Données)
URL de PolyPublie: https://publications.polymtl.ca/9381/
Titre de la revue: Electronics (vol. 9, no 12)
Maison d'édition: MDPI
DOI: 10.3390/electronics9122200
URL officielle: https://doi.org/10.3390/electronics9122200
Date du dépôt: 16 août 2023 12:19
Dernière modification: 25 sept. 2024 16:06
Citer en APA 7: Ghaffari, A., & Savaria, Y. (2020). CNN2Gate: an implementation of convolutional neural networks inference on FPGAs with automated design space exploration. Electronics, 9(12), 23 pages. https://doi.org/10.3390/electronics9122200

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document