<  Retour au portail Polytechnique Montréal

Automatic multiclass intramedullary spinal cord tumor segmentation on MRI with deep learning

Andreanne Lemay, Charley Gros, Zhizheng Zhuo, Jie Zhang, Yunyun Duan, Julien Cohen-Adad et Yaou Liu

Article de revue (2021)

Document en libre accès dans PolyPublie et chez l'éditeur officiel
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: Creative Commons: Attribution (CC BY)
Télécharger (1MB)
Afficher le résumé
Cacher le résumé

Abstract

Spinal cord tumors lead to neurological morbidity and mortality. Being able to obtain morphometric quantification (size, location, growth rate) of the tumor, edema, and cavity can result in improved monitoring and treatment planning. Such quantification requires the segmentation of these structures into three separate classes. However, manual segmentation of three-dimensional structures is time consuming, tedious and prone to intra- and inter-rater variability, motivating the development of automated methods. Here, we tailor a model adapted to the spinal cord tumor segmentation task. Data were obtained from 343 patients using gadolinium-enhanced T1-weighted and T2-weighted MRI scans with cervical, thoracic, and/or lumbar coverage. The dataset includes the three most common intramedullary spinal cord tumor types: astrocytomas, ependymomas, and hemangioblastomas. The proposed approach is a cascaded architecture with U-Net-based models that segments tumors in a two-stage process: locate and label. The model first finds the spinal cord and generates bounding box coordinates. The images are cropped according to this output, leading to a reduced field of view, which mitigates class imbalance. The tumor is then segmented. The segmentation of the tumor, cavity, and edema (as a single class) reached 76.7 ± 1.5% of Dice score and the segmentation of tumors alone reached 61.8 ± 4.0% Dice score. The true positive detection rate was above 87% for tumor, edema, and cavity. To the best of our knowledge, this is the first fully automatic deep learning model for spinal cord tumor segmentation. The multiclass segmentation pipeline is available in the Spinal Cord Toolbox (https://spinalcordtoolbox.com/). It can be run with custom data on a regular computer within seconds.

Mots clés

Deep learning, Automatic segmentation, Spinal cord tumor, MRI, Multiclass, CNN

Sujet(s): 1900 Génie biomédical > 1900 Génie biomédical
1900 Génie biomédical > 1901 Technologie biomédicale
2500 Génie électrique et électronique > 2500 Génie électrique et électronique
Département: Département de génie électrique
Institut de génie biomédical
Centre de recherche: NeuroPoly - Laboratoire de Recherche en Neuroimagerie
Organismes subventionnaires: CRSNG/NSERC, IVADO, Canada Research Chair in Quantitative Magnetic Resonance Imaging, Canadian Institute of Health Research, Canada Foundation for Innovation, Fonds de Recherche du Québec - Santé, Fonds de Recherche du Québec - Nature et Technologies, Canada First Research Excellence Fund (IVADO and TransMedTech), Courtois NeuroMod project and the Quebec BioImaging Network, Spinal Research and Wings for Life (INSPIRED project), National Science Foundation of China, Beijing Municipal Natural Science Foundation for Distinguished Young Scholars, Special Fund of the Pediatric Medical Coordinated Development Center of Beijing Hospitals Authority
Numéro de subvention: EX-2018-4, 950-230815, CIHR FDN-143263, 32454, 34824, 28826, 2015-PR-182754, RGPIN-2019-07244, 5886, 35450, 81870958, 81571631, JQ20035, XTYB201831
URL de PolyPublie: https://publications.polymtl.ca/9276/
Titre de la revue: NeuroImage - Clinical (vol. 31)
Maison d'édition: Elsevier
DOI: 10.1016/j.nicl.2021.102766
URL officielle: https://doi.org/10.1016/j.nicl.2021.102766
Date du dépôt: 19 avr. 2022 13:20
Dernière modification: 27 sept. 2024 05:02
Citer en APA 7: Lemay, A., Gros, C., Zhuo, Z., Zhang, J., Duan, Y., Cohen-Adad, J., & Liu, Y. (2021). Automatic multiclass intramedullary spinal cord tumor segmentation on MRI with deep learning. NeuroImage - Clinical, 31, 9 pages. https://doi.org/10.1016/j.nicl.2021.102766

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document