<  Retour au portail Polytechnique Montréal

Documents dont l'auteur est "Lemay, Andréanne"

Monter d'un niveau
Pour citer ou exporter [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
Réseau de collaboration
Nuage de mots
Grouper par: Auteurs ou autrices | Date de publication | Sous-type de document | Aucun groupement
Aller à : A | G | L
Nombre de documents: 11

A

Ahmed, S. R., Befano, B., Lemay, A., Egemen, D., Rodríguez, A. C., Angara, S., Desai, K., Jerónimo, J., Antani, S., Campos, N., Inturrisi, F., Perkins, R., Kreimer, A., Wentzensen, N., Herrero, R., del Pino, M., Quint, W., de Sanjose, S., Schiffman, M., & Kalpathy-Cramer, J. (2023). Reproducible and clinically translatable deep neural networks for cervical screening. Scientific Reports, 13(1), 21772 (18 pages). Lien externe

G

Gros, C., Lemay, A., Vincent, O., Rouhier, L., Bourget, M.-H., Bucquet, A., Cohen, P., & Cohen-Adad, J. (2021). Ivadomed : a medical imaging deep learning toolbox. Journal of Open Source Software, 6(58), 5 pages. Lien externe

Gros, C., Lemay, A., & Cohen-Adad, J. (2021). SoftSeg: Advantages of soft versus binary training for image segmentation. Medical Image Analysis, 71, 12 pages. Lien externe

L

Lemay, A., Gros, C., Karthik, E. N., & Cohen-Adad, J. (2023). Label fusion and training methods for reliable representation of inter-rater uncertainty. The Journal of Machine Learning for Biomedical Imaging, 1(January 20), 1-27. Lien externe

Lemay, A. (2022). Impact of Soft Segmentation Training on Medical Image Segmentation and Uncertainty Representation [Mémoire de maîtrise, Polytechnique Montréal]. Disponible

Lu, C., Lemay, A., Chang, K., Höbel, K., & Kalpathy-Cramer, J. (février 2022). Fair Conformal Predictors for Applications in Medical Imaging [Communication écrite]. 36th AAAI Conference on Artificial Intelligence (AAAI 2022). Lien externe

Lemay, A., Hoebel, K., Bridge, C. P., Befano, B., De Sanjose, S., Egemen, D., Rodríguez, A. C., Schiffman, M., Campbell, J. P., & Kalpathy-Cramer, J. (2022). Improving the repeatability of deep learning models with Monte Carlo dropout. npj Digital Medicine, 5(1), 11 pages. Lien externe

Lemay, A., Gros, C., Zhuo, Z., Zhang, J., Duan, Y., Cohen-Adad, J., & Liu, Y. (2021). Automatic multiclass intramedullary spinal cord tumor segmentation on MRI with deep learning. NeuroImage - Clinical, 31, 9 pages. Disponible

Lemay, A., Gros, C., Vincent, O., Liu, Y., Cohen, J. P., & Cohen-Adad, J. (juillet 2021). Benefits of linear conditioning for segmentation using metadata [Communication écrite]. 4th Conference on Medical Imaging with Deep Learning (CMDL 2021), Lübeck, Germany. Lien externe

Lemay, A., Gros, C., Vincent, O., Liu, Y., Cohen, J. P., & Cohen-Adad, J. (juillet 2021). Benefits of Linear Conditioning with Metadata for Image Segmentation [Présentation]. Dans 4th Conference on Medical Imaging with Deep Learning (MIDL 2021). Publié dans Proceedings of Machine Learning Research, 143. Lien externe

Lemay, A., Gros, C., Zhuo, Z., Duan, Y., Zhang, J., Cohen-Adad, J., & Liu, Y. (juin 2020). Spinal cord tumor segmentation using multimodal deep learning approach [Communication écrite]. 26th OHBM annual meeting. Non disponible

Liste produite: Fri Apr 25 03:12:15 2025 EDT.