<  Back to the Polytechnique Montréal portal

Items where Author is "Lemay, Andréanne"

Up a level
Export as [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
Jump to: A | G | L
Number of items: 11.

A

Ahmed, S. R., Befano, B., Lemay, A., Egemen, D., Rodríguez, A. C., Angara, S., Desai, K., Jerónimo, J., Antani, S., Campos, N., Inturrisi, F., Perkins, R., Kreimer, A., Wentzensen, N., Herrero, R., del Pino, M., Quint, W., de Sanjose, S., Schiffman, M., & Kalpathy-Cramer, J. (2023). Reproducible and clinically translatable deep neural networks for cervical screening. Scientific Reports, 13(1), 21772 (18 pages). External link

G

Gros, C., Lemay, A., Vincent, O., Rouhier, L., Bourget, M.-H., Bucquet, A., Cohen, P., & Cohen-Adad, J. (2021). Ivadomed : a medical imaging deep learning toolbox. Journal of Open Source Software, 6(58), 5 pages. External link

Gros, C., Lemay, A., & Cohen-Adad, J. (2021). SoftSeg: Advantages of soft versus binary training for image segmentation. Medical Image Analysis, 71, 12 pages. External link

L

Lemay, A., Gros, C., Enamundram, M. V. N. K., & Cohen-Adad, J. (2023). Label fusion and training methods for reliable representation of inter-rater uncertainty. The Journal of Machine Learning for Biomedical Imaging, 1(January 20), 1-27. External link

Lemay, A. (2022). Impact of Soft Segmentation Training on Medical Image Segmentation and Uncertainty Representation [Master's thesis, Polytechnique Montréal]. Available

Lu, C., Lemay, A., Chang, K., Höbel, K., & Kalpathy-Cramer, J. (2022, February). Fair Conformal Predictors for Applications in Medical Imaging [Paper]. 36th AAAI Conference on Artificial Intelligence (AAAI 2022). External link

Lemay, A., Hoebel, K., Bridge, C. P., Befano, B., De Sanjose, S., Egemen, D., Rodríguez, A. C., Schiffman, M., Campbell, J. P., & Kalpathy-Cramer, J. (2022). Improving the repeatability of deep learning models with Monte Carlo dropout. npj Digital Medicine, 5(1), 11 pages. External link

Lemay, A., Gros, C., Zhuo, Z., Zhang, J., Duan, Y., Cohen-Adad, J., & Liu, Y. (2021). Automatic multiclass intramedullary spinal cord tumor segmentation on MRI with deep learning. NeuroImage - Clinical, 31, 9 pages. Available

Lemay, A., Gros, C., Vincent, O., Liu, Y., Cohen, J. P., & Cohen-Adad, J. (2021, July). Benefits of linear conditioning for segmentation using metadata [Paper]. 4th Conference on Medical Imaging with Deep Learning (CMDL 2021), Lübeck, Germany. External link

Lemay, A., Gros, C., Vincent, O., Liu, Y., Cohen, J. P., & Cohen-Adad, J. (2021, July). Benefits of Linear Conditioning with Metadata for Image Segmentation [Presentation]. In 4th Conference on Medical Imaging with Deep Learning (MIDL 2021). Published in Proceedings of Machine Learning Research, 143. External link

Lemay, A., Gros, C., Zhuo, Z., Duan, Y., Zhang, J., Cohen-Adad, J., & Liu, Y. (2020, June). Spinal cord tumor segmentation using multimodal deep learning approach [Paper]. 26th OHBM annual meeting. Unavailable

List generated on: Sun Nov 16 07:25:10 2025 EST