Article (2018)
|
Open Access to the full text of this document Accepted Version Terms of Use: Creative Commons Attribution Non-commercial No Derivatives Download (80kB) |
Abstract
Numerous processes in the automotive, additive manufacturing or energy storage industries require an accurate prediction of the solidification (freezing) and melting (thawing) dynamics of substances. The numerical modeling of these phase changes is highly complex because it includes sharp moving interfaces and strong discontinuities in the material properties. This complexity is often exacerbated by the occurrence of natural convection, which induces a strong coupling between the motion of the liquid and the position of the solid–liquid interface. This leads to strongly coupled non-linear thermo-fluid problems which have to be solved in complex geometries.
In this work, we introduce two novel stabilized finite element models to predict the phase change with natural convection. The first model uses a more classical viscosity approach to impose stasis in the solid region whereas the second one is based on an immersed boundary formulation to accurately describe the solid–fluid interface.
The efficiency of the stabilization is first demonstrated by studying the Stefan problem. The two approaches to impose stasis are then compared using 2D test cases before they are both used to study melting in a rectangular (2D) and prismatic (3D) cavity. Significant differences are observed in the flow profiles and the solid–liquid interface position between the 2D and the 3D simulations.
Uncontrolled Keywords
Multiphase flows; Melting and freezing; Selective Catalytic Reduction (SCR); Computational fluid dynamics; Finite element method; Immersed boundary method
Additional Information: | Titre du manuscrit: A robust CFD model for freezing and melting in reservoir for Adblue (SCR) tanks |
---|---|
Subjects: |
1800 Chemical engineering > 1800 Chemical engineering 1800 Chemical engineering > 1803 Thermodynamics 1800 Chemical engineering > 1804 Heat transfer |
Department: | Department of Chemical Engineering |
Funders: | Natural Resources Canada - Office for Energy Research and Development - Energy Innovation Program, National Research Council Canada - Advanced Manufacturing Program |
PolyPublie URL: | https://publications.polymtl.ca/9068/ |
Journal Title: | Computers & Fluids (vol. 172) |
Publisher: | Elsevier |
DOI: | 10.1016/j.compfluid.2018.03.037 |
Official URL: | https://doi.org/10.1016/j.compfluid.2018.03.037 |
Date Deposited: | 12 Aug 2021 14:26 |
Last Modified: | 26 Sep 2024 17:57 |
Cite in APA 7: | Blais, B., & Ilinca, F. (2018). Development and validation of a stabilized immersed boundary CFD model for freezing and melting with natural convection. Computers & Fluids, 172, 564-581. https://doi.org/10.1016/j.compfluid.2018.03.037 |
---|---|
Statistics
Total downloads
Downloads per month in the last year
Origin of downloads
Dimensions