Ghazaleh Mirakhori, Jocelyn Doucet, Saad Chidami, Bruno Blais
et Jamal Chaouki
Article de revue (2025)
|
|
Accès restreint: Personnel autorisé jusqu'au 8 juillet 2027 Version finale avant publication Conditions d'utilisation: Creative Commons: Attribution-Utilisation non commerciale-Pas d'oeuvre dérivée (CC BY-NC-ND) Demander document |
Abstract
Traditionally, Radioactive Particle Tracking (RPT) relies on nuclear mathematical models to triangulate the position of a radioactive tracer, a process that involves significant computational resources and manual calibration. This work presents a novel methodology leveraging artificial intelligence and collaborative robotics to overcome these limitations. In this approach, a collaborative robot is employed to maneuver a radioactive tracer, generating a precise and extensive dataset that correlates physical positions with radiation levels measured by surrounding detectors. This dataset is then used to train an Artificial Neural Network (ANN) to reconstruct the particle positions. Results demonstrate that this approach provides superior accuracy in position reconstruction and flow field prediction, compared to traditional methods. The proposed technique offers significant advantages, including reduced computational complexity, faster and more accurate data acquisition, and the ability to handle complex geometries and flow conditions. These improvements make RPT method a promising tool for industrial applications.
Mots clés
| Renseignements supplémentaires: | Chemical engineering High-performance Analysis, Optimization and Simulation (CHAOS) Laboratory |
|---|---|
| Département: | Département de génie chimique |
| Centre de recherche: |
PEARL - Laboratoire de recherche avancée en génie des procédés Autre |
| Organismes subventionnaires: | NSERC |
| Numéro de subvention: | CRDPJ 536981-1 |
| URL de PolyPublie: | https://publications.polymtl.ca/66608/ |
| Titre de la revue: | Chemical Engineering Science (vol. 318) |
| Maison d'édition: | Elsevier BV |
| DOI: | 10.1016/j.ces.2025.122173 |
| URL officielle: | https://doi.org/10.1016/j.ces.2025.122173 |
| Date du dépôt: | 22 juil. 2025 16:24 |
| Dernière modification: | 15 nov. 2025 12:00 |
| Citer en APA 7: | Mirakhori, G., Doucet, J., Chidami, S., Blais, B., & Chaouki, J. (2025). AI-enhanced radioactive particle tracking: A practical methodology for accelerating industrial process development. Chemical Engineering Science, 318, 122173 (9 pages). https://doi.org/10.1016/j.ces.2025.122173 |
|---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions
