<  Retour au portail Polytechnique Montréal

Multi-agent deep reinforcement learning with online and fair optimal dispatch of EV aggregators

Arian Shah Kamrani, Anoosh Dini, Hanane Dagdougui et Keyhan Sheshyekani

Article de revue (2025)

Document en libre accès dans PolyPublie et chez l'éditeur officiel
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: Creative Commons: Attribution-Utilisation non commerciale-Pas d'oeuvre dérivée (CC BY-NC-ND)
Télécharger (2MB)
Afficher le résumé
Cacher le résumé

Abstract

The growing popularity of electric vehicles (EVs) and the unpredictable behavior of EV owners have attracted attention to real-time coordination of EVs charging management. This paper presents a hierarchical structure for charging management of EVs by integrating fairness and efficiency concepts within the operations of the distribution system operator (DSO) while utilizing a multi-agent deep reinforcement learning (MADRL) framework to tackle the complexities of energy purchasing and distribution among EV aggregators (EVAs). At the upper level, DSO calculates the maximum allowable power for each EVA based on power flow constraints to ensure grid safety. Then, it finds the optimal efficiency-Jain tradeoff (EJT) point, where it sells the highest energy amount while ensuring equitable energy distribution. At the lower level, initially, each EVA acts as an agent employing a double deep Q-network (DDQN) with adaptive learning rates and prioritized experience replay to determine optimal energy purchases from the DSO. Then, the real-time smart dispatch (RSD) controller prioritizes EVs for energy dispatch based on relevant EVs information. Findings indicate the proposed enhanced DDQN outperforms deep deterministic policy gradient (DDPG) and proximal policy optimization (PPO) in cumulative rewards and convergence speed. Finally, the framework’s performance is evaluated against uncontrolled charging and the first come first serve (FCFS) scenario using the 118-bus distribution system, demonstrating superior performance in maintaining safe operation of the grid while reducing charging costs for EVAs. Additionally, the framework’s integration with renewable energy sources (RESs), such as photovoltaic (PV), demonstrates its potential to enhance grid reliability.

Mots clés

Département: Département de génie électrique
Département de mathématiques et de génie industriel
Centre de recherche: GERAD - Groupe d'études et de recherche en analyse des décisions
URL de PolyPublie: https://publications.polymtl.ca/61958/
Titre de la revue: Machine Learning with Applications (vol. 19)
Maison d'édition: Elsevier
DOI: 10.1016/j.mlwa.2025.100620
URL officielle: https://doi.org/10.1016/j.mlwa.2025.100620
Date du dépôt: 16 janv. 2025 14:22
Dernière modification: 28 oct. 2025 01:43
Citer en APA 7: Kamrani, A. S., Dini, A., Dagdougui, H., & Sheshyekani, K. (2025). Multi-agent deep reinforcement learning with online and fair optimal dispatch of EV aggregators. Machine Learning with Applications, 19, 100620 (12 pages). https://doi.org/10.1016/j.mlwa.2025.100620

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document