<  Retour au portail Polytechnique Montréal

Evaluating map matching algorithms for smartphone GNSS data: matching vehicle trajectories to an urban road network

Joshua Stipancic, Nicolas Saunier, Néda Navidi, Etienne B. Racine, Luis Miranda-Moreno et Aurélie Labbe

Article de revue (2025)

Document en libre accès dans PolyPublie
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: Creative Commons: Attribution-Utilisation non commerciale-Pas d'oeuvre dérivée (CC BY-NC-ND)
Télécharger (2MB)
Afficher le résumé
Cacher le résumé

Abstract

Data from vehicles tracked using Global Navigation Satellite Systems (GNSS) can be used to monitor driving behaviour and road safety. In usage-based insurance programs, driver insurance premiums are tailored according to individual driving behaviour, often using data collected from user-owned smartphones. Due to positional noise caused, map matching algorithms must be used to spatially link GNSS observations to the road network. The purpose of this study is to evaluate the performance of several algorithms to process smartphone GNSS data for vehicular trips in urban road networks. This study evaluated five implementations, namely one topological (TMM), two probabilistic (PMM) using Hidden Markov Models (HMM), one fuzzy (FMM), and one hybrid map matching algorithm (HyMM) in terms of match accuracy and run time. Data was collected using ten smartphone devices and three applications across 12 trip scenarios in Montreal, Canada targeting the downtown, old city, highways, bridges, and tunnels. Results were compared with a series of ANOVA tests. Accuracy was not significantly different for the best performing algorithms (the Fast HMM and TMM) followed by the HyMM, with the Standard HMM and FMM algorithms performing significantly worse. Only the FMM algorithm was significantly slower than the others in terms of run time.

Mots clés

Département: Département des génies civil, géologique et des mines
URL de PolyPublie: https://publications.polymtl.ca/61913/
Nom de la conférence: World Conference on Transport Research (WCTR 2023)
Lieu de la conférence: Montréal, Québec
Date(s) de la conférence: 2023-07-17 - 2023-07-21
Titre de la revue: Transportation Research Procedia (vol. 82)
Maison d'édition: Elsevier
DOI: 10.1016/j.trpro.2024.12.045
URL officielle: https://doi.org/10.1016/j.trpro.2024.12.045
Date du dépôt: 15 janv. 2025 16:11
Dernière modification: 30 oct. 2025 13:14
Citer en APA 7: Stipancic, J., Saunier, N., Navidi, N., Racine, E. B., Miranda-Moreno, L., & Labbe, A. (2025). Evaluating map matching algorithms for smartphone GNSS data: matching vehicle trajectories to an urban road network. Transportation Research Procedia, 82, 303-322. Présentée à World Conference on Transport Research (WCTR 2023), Montréal, Québec. https://doi.org/10.1016/j.trpro.2024.12.045

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document