<  Retour au portail Polytechnique Montréal

Transfer learning-empowered physical layer security in aerial reconfigurable intelligent surfaces-based mobile networks

Yosefine Triwidyastuti, Tri Nhu Do, Ridho Hendra Yoga Perdana, Kyusung Shim et Beongku An

Article de revue (2025)

Document en libre accès dans PolyPublie et chez l'éditeur officiel
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: Creative Commons: Attribution (CC BY)
Télécharger (2MB)
Afficher le résumé
Cacher le résumé

Abstract

This paper investigates the enhancement of physical layer security (PHY security) in Reconfigurable Intelligent Surfaces (RIS)-aided terrestrial and non-terrestrial networks (TN/NTN), focusing on the challenges posed by node mobility. In the context of next-generation mobile networks, ensuring secure communication is critical, especially under varying channel conditions caused by mobility. We explore different mobility models, including random walk, Gauss-Markov, and reference point group mobility, to assess their impact on key security metrics such as secrecy capacity and average secrecy rate. To address these challenges, we develop robust algorithms for optimizing the phase-shift configurations of RIS. Additionally, we employ Artificial Intelligence (AI) and Machine Learning (ML) techniques, specifically Deep Neural Networks (DNN), for performance prediction of PHY security metrics. We also leverage transfer learning to enhance model robustness across different mobility scenarios through domain adaptation. Our results demonstrate the effectiveness of our proposed methods in maintaining high levels of PHY security despite the dynamic nature of the channel conditions and the mobility of nodes. The proposed phase-shift configuration algorithms and ML-based solutions ensure secure and resilient communication in aerial RIS-aided TN/NTN, contributing to the advancement of secure mobile networks.

Mots clés

Département: Département de génie électrique
Organismes subventionnaires: National Research Foundation of Korea (NRF)
Numéro de subvention: NRF-2022R1A2B5B01001190
URL de PolyPublie: https://publications.polymtl.ca/61781/
Titre de la revue: IEEE Access (vol. 13)
Maison d'édition: IEEE
DOI: 10.1109/access.2025.3526178
URL officielle: https://doi.org/10.1109/access.2025.3526178
Date du dépôt: 08 janv. 2025 11:07
Dernière modification: 18 nov. 2025 11:14
Citer en APA 7: Triwidyastuti, Y., Do, T. N., Perdana, R. H. Y., Shim, K., & An, B. (2025). Transfer learning-empowered physical layer security in aerial reconfigurable intelligent surfaces-based mobile networks. IEEE Access, 13, 5471-5490. https://doi.org/10.1109/access.2025.3526178

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document