Mathieu Chayer, Philippe Phan, Pierre‐Jean Arnoux, Zhi Wang et Carl-Éric Aubin
Article de revue (2024)
Document en libre accès dans PolyPublie et chez l'éditeur officiel |
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution-Pas d'utilisation commerciale-Pas de modification (CC BY-NC-ND) Télécharger (5MB) |
|
|
Libre accès au plein texte de ce document Matériel supplémentaire Conditions d'utilisation: Creative Commons: Attribution-Pas d'utilisation commerciale-Pas de modification (CC BY-NC-ND) Télécharger (193kB) |
|
|
Libre accès au plein texte de ce document Matériel supplémentaire Conditions d'utilisation: Creative Commons: Attribution-Pas d'utilisation commerciale-Pas de modification (CC BY-NC-ND) Télécharger (256kB) |
Abstract
Background Oblique lumbar intervertebral fusion aims to decompress spinal nerves via an interbody fusion cage, but the optimal surgical strategy, including implant selection for specific patient characteristics, remains unclear. A biomechanical model was developed to assess how pathophysiological characteristics and instrumentation impact spinal realignment, indirect decompression, and cage subsidence risk.
Methods A finite element model of the L4-L5 segment was derived from a validated asymptomatic T1-S1 spine model. Five cases of grade I spondylolisthesis with normal or osteoporotic bone densities and initial disc heights of 4.3 to 8.3 mm were simulated. Oblique lumbar intervertebral fusion with cage heights of 10, 12, and 14 mm (12° lordosis) was examined. Postoperative changes in disc height, foraminal and spinal canal dimensions, segmental lordosis, and vertebral slip were assessed. Vertebral stresses and displacements under 10 Nm flexion and 400 N gravitational load were compared between stand-alone constructs and bilateral pedicle screw fixation using rods of 4.75, 5.5, and 6 mm diameters.
Findings Oblique lumbar intervertebral fusion significantly improved postoperative disc height, foraminal and spinal canal dimensions, with the greatest enhancements observed with 14 mm cages. Bilateral pedicle screw fixation markedly reduced cortical endplate stresses and displacements compared to stand-alone constructs, with added benefits from larger rod diameters. Low bone density increased displacements by 63 %.
Interpretation Thicker cages achieve better decompression but increase subsidence risk. Bilateral pedicle screw fixation with 6 mm rods minimizes endplate stresses and displacements, especially in osteoporotic cases. Future research will validate these findings and explore the model's potential for surgical planning.
Mots clés
lumbar spine surgery; biomechanical study; oblique lumbar interbody fusion (OLIF); finite element modelling; indirect decompression
Sujet(s): |
1900 Génie biomédical > 1900 Génie biomédical 1900 Génie biomédical > 1901 Technologie biomédicale |
---|---|
Département: | Institut de génie biomédical |
Organismes subventionnaires: | NSERC / CRSNG, Fonds de recherche du Québec – Nature et technologies, TransMedTech Institute |
URL de PolyPublie: | https://publications.polymtl.ca/59443/ |
Titre de la revue: | Clinical Biomechanics (vol. 120) |
Maison d'édition: | Elsevier |
DOI: | 10.1016/j.clinbiomech.2024.106352 |
URL officielle: | https://doi.org/10.1016/j.clinbiomech.2024.106352 |
Date du dépôt: | 30 oct. 2024 10:11 |
Dernière modification: | 19 nov. 2024 20:27 |
Citer en APA 7: | Chayer, M., Phan, P., Arnoux, P.‐J., Wang, Z., & Aubin, C.-É. (2024). Biomechanical modelling of indirect decompression in oblique lumbar intervertebral fusions – A finite element study. Clinical Biomechanics, 120, 106352 (9 pages). https://doi.org/10.1016/j.clinbiomech.2024.106352 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions