Jaloliddin Rustamov, Zahiriddin Rustamov, Nadia Badawi, Nazar Zaki, Rafat Damseh et Frédéric Lesage
Communication écrite (2024)
Un lien externe est disponible pour ce documentAbstract
Computational quantification of magnetic resonance imaging (MRI) response from neurovascular structures is used to investigate potential biomarkers for different types of cerebrovascular deteriorations at the microscopic scale. Simulation-based MRI requires fully resolved microvascular structures, with geometric and physiological parameters, from tissue volumes captured using microscopic imaging modalities, e.g., optical coherence tomography (OCT). The preparation of such input models hinders large cohort studies and requires extensive manual effort. Here, we propose using 3D neural networks as an alternative learning-based solution over MRI simulation schemes. We trained state-of-the-art 3D neural networks to predict the spin echo (SE) MRI response from OCT microvascular volumes. By validating against simulated signals, our result demonstrates that the 3D ResNet-based regression network achieves a high accuracy to predict MRI signals with an average mean square error (MSE) <1%, R2 of 82.8% and explained variance score of 82.9%.
Sujet(s): |
1900 Génie biomédical > 1900 Génie biomédical 1900 Génie biomédical > 1901 Technologie biomédicale |
---|---|
Département: |
Département de génie électrique Institut de génie biomédical |
Organismes subventionnaires: | United Arab Emirates University |
Numéro de subvention: | 12T037, 12R239 |
URL de PolyPublie: | https://publications.polymtl.ca/59027/ |
Nom de la conférence: | 28th annual Conference on Medical Image Understanding and Analysis (MIUA 2024) |
Lieu de la conférence: | Manchester, UK |
Date(s) de la conférence: | 2024-07-24 - 2024-07-26 |
Maison d'édition: | Springer |
DOI: | 10.1007/978-3-031-66955-2_4 |
URL officielle: | https://doi.org/10.1007/978-3-031-66955-2_4 |
Date du dépôt: | 22 août 2024 00:09 |
Dernière modification: | 25 sept. 2024 16:51 |
Citer en APA 7: | Rustamov, J., Rustamov, Z., Badawi, N., Zaki, N., Damseh, R., & Lesage, F. (juillet 2024). Learning-based MRI response predictions from OCT microvascular models to replace simulation-based frameworks [Communication écrite]. 28th annual Conference on Medical Image Understanding and Analysis (MIUA 2024), Manchester, UK. https://doi.org/10.1007/978-3-031-66955-2_4 |
---|---|
Statistiques
Dimensions