Aida Meftah, Tri Nhu Do, Georges Kaddoum et Chamseddine Talhi
Article de revue (2024)
Un lien externe est disponible pour ce documentAbstract
In this paper, we present a novel federated learning (FL) algorithm, named Aggregated and Augmented Training Federated (AAT-Fed), tailored for stochastic, distributed, tactical terrestrial and non-terrestrial (SDT-TNT) network environments. Focusing on an SDT-TNT network with multiple clusters and potential unknown jammers, our approach addresses jammer detection through convolutional variational autoencoders (C-VAEs) within the FL framework. Leveraging the spectral correlation function (SCF) of the in-phase and quadrature (I/Q) representation of received signals, our method extracts discriminating features for jammer detection in the absence of prior knowledge about the jammers. AAT-Fed excels at managing the unique characteristics of the tactical TNT network, considering its stochastic nature and the heterogeneity in data distribution between network cells, leading to enhanced jamming detection accuracy. Comparative simulation results demonstrate AAT-Fed’s superior performance over FL and non-FL approaches, showcasing its effectiveness in providing accurate jamming detection at a low jamming-to-noise ratio.
Mots clés
jamming; autonomous aerial vehicles; servers; heuristic algorithms; scalability; knowledge engineering; feature extraction
Sujet(s): | 2500 Génie électrique et électronique > 2500 Génie électrique et électronique |
---|---|
Département: | Département de génie électrique |
URL de PolyPublie: | https://publications.polymtl.ca/58774/ |
Titre de la revue: | IEEE Transactions on Green Communications and Networking |
Maison d'édition: | IEEE |
DOI: | 10.1109/tgcn.2024.3425792 |
URL officielle: | https://doi.org/10.1109/tgcn.2024.3425792 |
Date du dépôt: | 21 août 2024 00:09 |
Dernière modification: | 25 sept. 2024 16:51 |
Citer en APA 7: | Meftah, A., Do, T. N., Kaddoum, G., & Talhi, C. (2024). Federated learning-enabled jamming detection for stochastic terrestrial and non-terrestrial networks. IEEE Transactions on Green Communications and Networking, 3425792 (19 pages). https://doi.org/10.1109/tgcn.2024.3425792 |
---|---|
Statistiques
Dimensions