Laurie Fontaine, Robert Legros et Jean‐Marc Frayret
Article de revue (2024)
Document en libre accès dans PolyPublie |
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (2MB) |
Abstract
This article proposes a framework for developing predictive models of end-of-life product flows, highlighting the importance of conducting thorough analyses before developing waste management and end-of-life product flow strategies. The framework emphasizes the importance of recognizing the nature and quality of the available data and finding a balance between model development time and detail requirements. It is designed to adapt to source material heterogeneity and address varying data availability scenarios, such as the presence or absence of radio frequency identification chips. A case study for the city of Gatineau is presented, showcasing the framework’s application through agent-based simulation models in a geographic information systems environment. The study focuses on creating models of municipal solid waste generation based on socioeconomic and demographic factors and collection data to accurately predict the quantity and quality of waste streams, enabling municipalities to assess the environmental impact of their waste management strategies.
Mots clés
Municipal solid waste; agent-based simulation models; waste prediction; GIS environment; household behaviours; end-of-life product flows; socioeconomic and demographic factors
Département: |
Département de génie chimique Département de mathématiques et de génie industriel |
---|---|
URL de PolyPublie: | https://publications.polymtl.ca/57589/ |
Titre de la revue: | Waste Management & Research |
Maison d'édition: | SAGE Publishing |
DOI: | 10.1177/0734242x241231414 |
URL officielle: | https://doi.org/10.1177/0734242x241231414 |
Date du dépôt: | 25 mars 2024 15:25 |
Dernière modification: | 26 sept. 2024 02:15 |
Citer en APA 7: | Fontaine, L., Legros, R., & Frayret, J.‐M. (2024). Solid waste generation prediction model framework using socioeconomic and demographic factors with real-time MSW collection data. Waste Management & Research, 15 pages. https://doi.org/10.1177/0734242x241231414 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions