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Introduction

In the context of a circular economy, waste management is 
gaining new importance regarding resources to be exploited 
sustainably. Collectively Canadian households send 10 million 
tonnes of waste annually to landfills, or about 460 kg per person 
per year (Statistique Canada, 2019). Although landfilling has 
long been the only way to dispose of residual materials, munici-
palities now face a challenge in adhering to the 3R-RD hierar-
chy through their solid waste management system, that is, 
Reduce, Reuse, Recycle, Reclaim and, if not possible, Dispose 
of these materials.

The amount and composition of solid waste generated must be 
known in order to operate, plan and optimize a solid waste man-
agement system more efficiently. The heterogeneity in quantity 
and quality of the material flows generated complicates its treat-
ment and hinders its recovery (Sharma et al., 2019). Furthermore, 
many factors, such as demographics, incomes and individual 
behaviours, affect municipal solid waste (MSW) generation 
(Ceylan, 2020). Several recent studies have argued that a man-
agement system analysis should include both environmental as 
well as financial and social elements (Weng and Fujiwara, 2011), 
thereby fully adhering to sustainability objectives.

This article aims to provide a framework for reliably using the 
knowledge discovery in databases (KDD) process with MSW 

data. This framework will assist scientists in efficiently designing 
the KDD process stage and dealing with missing MSW data, pro-
ducing knowledge with higher quality in our field.

Literature review

MSW generation models usually predict quantity and quality of 
MSW in order to optimize and plan collection and treatment 
operations and capacities. The literature proposes several models 
and studies to forecast future waste generation patterns and to 
evaluate the impact of different waste management strategies. 
They are also useful in identifying trends and patterns in waste 
generation, which can inform policy and decision-making at the 
local, regional and national levels. In the following sections, we 
will explore different types of waste generation models, their 
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components and applications and the challenges associated with 
their development and use.

The use of influencing factors in MSW 
generation models

The influencing factors used in MSW generation models are 
numerous and diverse. They include demographic factors, such as 
population and age distribution, as well as socioeconomic factors, 
such as income levels, education and employment. Dwelling types, 
waste management practices and industrial and commercial activi-
ties can also significantly affect waste generation patterns (Beigl 
et al., 2008). Seasonal factors, such as holidays and weather condi-
tions, can further influence waste generation patterns (Saladie, 
2016). In a study exploring optimal organic material treatment in 
diverse Mexican cities (De Medina-Salas et al., 2019), waste quan-
tities, moisture content and biochemical methane potential vary 
significantly across locations. These variations are attributed pri-
marily to factors like socioeconomic strata and dietary patterns, as 
indicated in their prior research (Castillo-González and De 
Medina-Salas, 2014). These studies underscore the crucial role of 
accurate data on MSW generation and composition as a fundamen-
tal input for decision-making tools. Furthermore, Xia et al. (2022) 
sustain that such an influence is not linear and that the local context 
seems to impact the system’s response to these factors. For exam-
ple, research by Goel et al. (2017) suggests that an increase in 
income is associated with higher recycling rates. In contrast, a 
study conducted by Ferrara and Missios (2005) indicates that a 
reduction in income may lead to lower recycling rates. Wu et al. 
(2020) also observed this, using neural networks to analyse and 
compare the impact of regional factors on model accuracy. The 
authors have concluded that if some regions share similarities in 
predictor influence, the use of large-scale models (state or country 
wide research) should be limited to cities lacking historical data 
about their own MSW generation.

A significant number of studies successfully represent the 
generation of one or more collection routes with different level of 
details (Beigl et al., 2008; Dias et al., 2021; Goel et al., 2017). 
Collection routes data are typically used to estimate the amount 
of waste produced from a given area by considering the type, 
frequency and number of collection services that are available in 
the area. By using data from collection routes, models can more 
accurately reflect the varying waste generation rates among dif-
ferent areas and help evaluate the impact of specific waste man-
agement strategies, such as changes in collection frequency or 
the introduction of new collection types or recycling programmes. 
Additionally, collection routes can help identify areas of waste 
generation that may require additional attention or resources, 
such as those with higher waste generation rates.

Types of MSW generation models

Different types of models are used to predict MSW generation 
and estimate the quantity and composition of waste in a particular 
region or community. Common types of MSW generation 

models are empirical regression models, input–output models, 
scenario-based models and hybrid models combining different 
modelling approaches (Edo-Alcón et al., 2016; Kannangara 
et al., 2018; Xia et al., 2022).

A meta-analysis of MSW generation prediction models (Dias 
et al., 2021) showed that artificial neural network was the most 
used technique with 35.8% of the research, followed by linear 
regression (16%) and support vector machine (12.3%). With the 
emergence of fields such as data science, several prediction mod-
els benefit from hybrid data mining and machine learning mecha-
nisms (Bose and Mahapatra, 2001). These models can therefore 
observe trends based on historical waste material data.

Despite the performance of machine learning, the black-box 
quality of these models reduces the interpretability of the rela-
tionship between parameters and results (Hoque and Rahman, 
2020). In contrast, simulation modelling based on a stochastic 
and mechanistic approach allows for concrete problem solving 
based on an awareness of the system in place. This analysis 
method can be tested and validated while allowing a better under-
standing of the internal processes. Moreover, uncertainties 
regarding the waste produced and the population growth under 
policy change can be included in simulations as done by Huang 
et al. (2005) and Singh (2019). Simulation can also facilitate 
communication with stakeholders and enable in-depth compara-
tive analysis to justify investment and planning decisions as it 
have been done with De Medina-Salas et al.’s (2019) work.

MSW historical data and model 
uncertainty

Rapid urban growth and insufficient budgets prevent many 
municipalities from obtaining complete historical data, limiting 
the technological tools used, particularly at the household or 
community level (Ding et al., 2018; Kannangara et al., 2018). 
Because of this data shortage, Boskovic et al. (2016) identified 
that containers were the most common collection method used in 
case studies. However, curbside collection is common in munici-
palities. Due to the high variability in attributes, such as socio-
economic factors and generation itself, small datasets increase 
the complexity of the analyses and produce low accuracy models. 
This highlights the need to invest in model training to demon-
strate the value of data structuring and management in the indus-
try (Dias et al., 2021).

As data become more available, geographic information sys-
tem (GIS) helps to represent interactions in a real system and thus 
better support the interdependencies between the micro behav-
iours of the system and the spatial environment (Georgé et al., 
2003). In waste management simulations, material transport 
between citizens and treatment centres and land use benefits from 
GIS and can lead to the optimization of collection routes 
(Nguyen-Trong et al., 2017; Ruiz-Chavez et al., 2018). The 
emergence of radio frequency identification (RFID) technology 
on tags identifying and tracking bin pickup also supports realistic 
simulations in geographic environments. Imran and Kim (2020) 
used RFID data, GIS maps waste bins, electronic and predictive 
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data analysis to virtualize waste to its actual location. Smart bin 
collections were then compared to the daily breakdown of waste 
in the study area.

Nevertheless, Dias et al.’s (2021) research showed that MSW 
research’s main challenges are data collection and processing. 
When forced with insufficient data, Al-Khateeb et al. (2021) rec-
ommend tackling this challenge by collecting more information 
or designing a method suitable for the quantity of data at hand.

A way to design a suitable method with data in mind is the 
KDD process, which consists of multiple steps such as data 
selection, preprocessing, data transformation, trend finding (data 
mining) and visualization for interpretation (Luo, 2008). Working 
with waste management data requires its transformation through 
multiple preprocessing steps that must be performed correctly to 
avoid bias. Bias may come from the variability of individual con-
tainer weight caused by population’s behaviour and factor men-
tioned earlier. KDD have been used successfully in MSW studies 
as presented by Dias et al. (2021) literature review or Korhonen 
and Kaila (2015) work on MSW data preprocessing to create reli-
able information on household waste generation. However, this 
method does not guide the user in case of low-quality data or low 
availability of data and how to work around these challenges. 
Therefore, research should support KDD with framework appro-
priate to MSW particular requirements to avoid interfering with 
the complexity of scenarios that may be proposed. This frame-
work would need to be flexible towards the datasets and their 
uncertainty, while helping to position any study in its geographi-
cal context and the impact that context may have on the results.

General methodological framework

This framework aims to propose a general methodology to 
develop an agent-based simulation model in a GIS environment 
capable of accurately predicting detailed MSW generation for 
applications such as collection route and capacity planning.

Although the information required from municipalities may 
vary, the proposed framework aims at building models of dwell-
ings MSW generation based on socioeconomic and demographic 
factors and possible collection data with a systematic and organ-
ized approach. The framework proposed in this study contains 
three steps as presented in Figure 1: Data Selection, Data trans-
formation and Preprocessing and Data mining.

Firstly, it is necessary to recognize the nature and quality of 
the data that are available in relation to the decision-making con-
text. For examples, understanding what is known about the 
dwellings allows the identification of missing datasets to meet 
the study needs. Without additional information, assumptions 
based on similar studies or expert opinion, or data transforma-
tions, such as adding synthetic data, must be applied. These may 
decrease the accuracy of a model. In addition, knowing the scope 
of the study allows to find a balance between model development 
time and detail requirements.

Figure 2 presents the proposed general framework for data 
selection based on knowledge limit. Among others, it shows how 
to address different cases of data availability, particularly 

regarding RFID chips access. When RFID chips are present, we 
have information about the weight per bin, the weight per truck 
or the weight associated with a specific organizational unit. In 
this context, organizational unit refers to a distinct and identifia-
ble component or entity within an organization responsible for 
the efficient and systematic handling of waste-related activities. 
These units often encompass a variety of entities, such as munici-
palities, specific geographic regions, fleets of waste collection 
trucks or segments of truck routing. This changes the generation 
variability description since the level of details is higher. Then, it 
is possible to correctly represent citizens’ participation in collec-
tive waste collections. Further studies on individual dwelling 
behaviour are also possible. In cases where RFID chips are not 
available, if only a global weight is known for the total amount of 
collected dwellings, the dwelling behaviour is generalized to the 
entire population, which limits the accuracy of the model.

If intermediate knowledge is obtained, such as the routing of 
trucks without RFID chips and its total weight, the collected 
dwellings must be identified for each route. With the emergence 
of municipal databases, it is possible to track the location of 

Figure 1. MSW model design framework.
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trucks in real time, as well as their material discharge weights 
during a working day. If waste generation prediction must con-
sider the heterogeneity of the population in terms of sociodemo-
graphic profiles and household behaviours, individual addresses 
must also be tracked to link collected dwelling sociodemographic 
profiles to the corresponding truck total weight. Although each 
dwelling cannot be specifically identified (due to lack of indi-
vidual RFID data), it is still possible to calibrate (i.e. train) a gen-
eral MSW generation model using dwelling sociodemographic 
profiles, truck weight and collection route records. To do so, the 
address dataset must be layered with truck discharge weight and 
coordinates to deal with the missing RFID data.

Since this scenario requires additional steps, it is the focus of 
the case study presented in the next section. It demonstrated how 
the framework can adapt the model development to the source 
material heterogeneity.

Application of the proposed research 
framework: Case of Gatineau’s waste 
generation

This section aims to apply the proposed methodological frame-
work to the case of an average size Canadian city: Gatineau. 
Through the case study analysis, we demonstrate the frame-
work’s ability to adapt to the heterogeneity of the source material 
and address different cases of data selection and transformation. 
The following sections will detail the methodology and findings 
of this case study.

Data selection and case study 
presentation

The study area chosen is the city of Gatineau, a city adjacent to 
Canada’s capital, Ottawa, where the population produces on 

average 8.0 kg dwelling−1 week−1 of mixed waste that are col-
lected and disposed in landfill by the municipality (Service de 
l’environnement, 2022). It’s important to note that this figure 
specifically pertains to mixed waste and does not include data for 
recycling or organic waste collections. Using a specific city and 
collection stream for the study ensures that data capture is stand-
ard and consistent for each database entry. Choosing mixed waste 
as a proof of concept not only enhances our understanding of this 
stream but also lays the foundation for innovative material val-
orization methods, while also enabling the application of the 
same methodology to other collection streams in the future. 
Although RFID technology is being implemented for some MSW 
collections in the territory, the information was unavailable for 
this study.

The four databases presented in Table 1 were available for 
three pre-COVID years. Truck travel records are available for 
container and bin collections in the territory. It is important to 
note that most multi-family dwellings are collected by contain-
ers, whereas most single-family dwellings are collected by bins. 
However, this is only true for some dwellings, making it impos-
sible to completely dissociate the two collection types to obtain a 
complete picture of the territory.

For a given collection day, a dwelling is not required to par-
ticipate in the curbside collection. This non-participation does 
not mean that waste production is stopped, but rather that the 
amount may have been adjusted in a subsequent collection. 
However, according to the law of large numbers, if one repeats an 
experiment independently a high number of times, the average 
result should be close to the true value (Hsu and Robbins, 1947), 
which means that with a sufficient number of dwellings, these 
inconsistencies become negligible. On the other hand, the 
strength of the RFID chip is the ability to observe and study non-
participation in the collections and thus ensure a better knowl-
edge of the actual number of dwellings collected by a given 

Figure 2. Proposed framework for data selection based in knowledge limit.
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truck, thereby giving a more accurate value of the distribution of 
MSW generated per week and per dwelling. In the absence of this 
information, the challenge is to create a new dataset that links 
dwellings’ unique ID (i.e. addresses) with trucks’ collect routing, 
ensuring that it is possible to correctly identify which trucks col-
lect a given dwelling while maintaining a sufficiently large set of 
dwellings.

The methodology introduced in this section, as depicted in 
Figure 3, utilizes the overlapping nature of solid waste collection 
data, which includes information about trucks’ discharged weight 
and routes. This methodology is employed to develop a predic-
tive model for household solid waste generation, incorporating 
socioeconomic and demographic factors. Although a set of socio-
economic and demographic parameters is needed to explain 
MSW generation and the true household behaviour, some are 
known to have a definite influence on generation, such as hous-
ing (Lagneau, 2018). Although the methodology can be applied 
to many different parameters, housing will be the focus of this 
study.

Statistics Canada divides dwellings into eight distinct catego-
ries, which provide a great deal of information about the area, but 
do not necessarily correspond to eight different waste generation 
profiles. Therefore, this study has separated dwellings into two 
categories: single-family dwellings and the broad category of 
multi-family dwellings. This allows for focusing on the barriers 
and waste management challenges often associated with multi-
family housing, such as lack of knowledge and education about 
waste management (Pawlewicz et al., 2019).

Data transformation and hybridation

Firstly, it is necessary to merge the quantities collected by trucks 
and their GIS route tracked with GPS. In the meantime, the 
addresses can be cross-referenced to the polygons described by 
the Statistics Canada census. Secondly, the lack of RFID infor-
mation requires the use of a reverse geocoding algorithm to link 
the collected dwellings to the appropriate truck. This reverse 
geocoding algorithm aims to match geographic coordinates into 
human-readable addresses (Karimi and Karimi, 2017). Li et al. 
(2017) used reverse geocoding to identify evacuation trigger 
points during a wildfire. A safety buffer around the fire was used 
to identify homes at risk. Here, we used a similar process to iden-
tify potential homes collected by each collection truck at a spe-
cific time. To match the GPS coordinates of a truck’s route with 
addresses, this algorithm uses buffers. A buffer is a circular area 
defined by a radius and centred at the coordinates of a specific 
address. If the GPS coordinates of the truck’s route is within the 
buffer, the dwelling at this address is flagged as collected.

To adjust the parameters of this algorithm and avoid missing 
addresses or adding wrong addresses, several buffer sizes (Figure 4) 
were tested over 10 weeks of waste collection. The 30 m radius 
buffer appears to provide the closest representation of the actual 
number of dwellings in the area. This value is interesting for sin-
gle-family homes in dense areas since 30 m is generally equiva-
lent to the total lot size thus limiting the addition of false positives. 
Some multi-family dwellings may have their geolocation point 
further away than 30 m due to the larger size of their building and 

Table 1. Gatineau’s available datasets.

Features Description

Trucks travel 
record

Truck Identification (ID) Unique ID of the physical truck
Time Recording of the position every 20 seconds
Latitude Latitude of the location of the truck
Longitude Longitude of the location of the truck
Speed Speed of the truck
Ignition Status of the motor

Discharge centre 
record

Truck ID Unique ID of the physical truck
Hour of discharge Time of recording
Waste amount Weight of waste per truck for 2017 to 2019

Address 
database

Address ID Unique and anonymous ID for physical addresses
Latitude Latitude of the location of the address
Longitude Longitude of the location of the address
Number of dwelling Number of dwellings at the address
Type of waste collection Curbside or container

2016 Canadian 
Census data

Dissemination area (DA) ID Dissemination area with an average population of 400–700
DA grid GIS polygon of the dissemination area
Population Person count in the DA
Dwelling type Distribution of people per 8 divisions of dwelling type
Salary Distribution of people per 11 divisions of salary
Household size Mean of household size in the DA
Schooling Distribution of people per 3 divisions of diploma
Age Distribution of people per 7 divisions of age
Gender The male and female population count

GIS: geographic information systems.
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lot. However, these dwellings are more often collected by con-
tainers, bringing the trucks and their buffer closer to the centroids 
of these buildings.

Since collections in the area can be curbside or by containers, 
the databases of dwellings and trucks were split so that the cor-
rect type of truck could only collect a type of dwelling. The sec-
ond step is to ensure that the trucks are in collect mode by looking 
at the engine ignition device and travel speed. Some major roads 
are frequently used by trucks. Indeed, it is possible to verify that 
the few homes on these roads were not overrepresented in the 
new databases by using a maximum collection speed of 15 km 
hour−1. GPS coordinates and speed are not necessarily recorded 
when the truck stops. However, setting a maximum speed of 
15 km hour−1 ensures that the truck is most likely in collect mode.

Furthermore, because most databases include missing values 
and anomalies caused by equipment failure, human error and 
similar problematic situations (Heilala, 2018), we also addressed 
outliers and missing data. A mismanagement of these problems 
can lead to misinterpretations. In waste management, such anom-
alies may occur for many reasons such as bad weather, a spike in 
MSW amounts or the collection of wastes outside the typical col-
lection area. Therefore, as described in Figure 3, there is a pre-
processing step before data may be analysed.

Figure 3. Case study proposed methodology.

Figure 4. Number of dwellings collected per buffer size.



Fontaine et al. 7

Model architecture

As mentioned earlier, this model uses agent modelling and sim-
ulation. Each dwelling corresponds to a specific agent with spe-
cific attributes such as an address, a type of dwelling and 
eventually a sociodemographic profile. Each agent randomly 
generates waste and has specific sorting habits that must be 
calibrated with collected data. Although it is a rather simple 
model, the calibration to identify the agents’ waste generation 
profile and sorting habits is challenging. Every action and deci-
sion the agent takes must be calibrated with generation being 
the focus of this framework. The use of an agent-based simula-
tion model not only facilitates a comprehensive evaluation of 
waste production but also paves the way for further research 
into dwelling behaviour.

The following state diagram dictates each agent’s action 
(Figure 5). The architecture of the model requires that the genera-
tion of materials be identified by dwelling, but also according to 
key socioeconomic parameters differentiating agents.

Model implementation and calibration

The model was implemented using the AnyLogic simulation 
platform. Anylogic is a powerful simulation software that allows 
users to create complex models and simulations of various sys-
tems and processes. Anylogic, while having its own program-
ming language, can also be connected with Python, a popular and 
flexible programming language with a wide array of libraries and 
data analysis tools. Additionally, we utilized Python indepen-
dently from Anylogic for its open-source GIS processing library.

The model calibration methodology uses multiple data 
sources, including measured truck weights. Several sequential 
steps were implemented beyond data preparation. Each step 
helps narrow the experimental conditions to calibrate the model 
and improve its accuracy. These steps are:

•• Select representative weeks using descriptive analysis
•• Select a proper training/testing split ratio of trucks’ weights 

using mean square error (MSE)
•• Select outlier elimination process using multi-unit and single-

family dwelling generation rates
•• Select representative subcategories of the calibrated parameters
•• Evaluate the performance of the developed model

The calibration method used is the non-negative least squares 
solver from the python library SciPy. The optimization is an active 
set method using a minimization objective function and a set of 
constraints based on Karush–Kuhn–Tucker conditions that define 
the feasible region, as published in Lawson and Hanson (1995).

arg formin
τ

τA b x− ≥2
0  (1)

For a given number of trucks (n), we represent ‘A’ as a 2-by-n 
matrix that shows the quantities of waste collected from single-
family and multi-family dwellings by each truck. The vector ‘b’ 
represents the total waste weight in the trucks, and ‘τ ’ symbol-
izes the waste generation rate for both single-family and multi-
family dwellings in the experiment. Therefore, the performance 
or the calibrated parameters are used with each truck and their 
specific population to evaluate the objective function.

An essential part of each calibration is to perform cross-vali-
dation, that is, to repeat the experiments several times, removing 
a different portion of the samples at each repetition. The MSE 
(equation (2)) was used to assess the capacity of the model to be 
calibrated, as well as its capacity to make accurate prediction. It 
is the root mean square difference between the estimated values 
(Yi ) and the actual values (Yi ).

MSE =
=
∑ −

1

1

2

n i

n
Yi Y i( ) .

 (2)

Results analysis

Some truck routes are used to calibrate the model and others to 
evaluate performance. However, it is possible to do this separa-
tion in several different ways:

•• Split the collection routes by choosing truck routes indepen-
dently of their collection days and neighbourhoods

•• Split according to the neighbourhoods by combining truck 
routes

•• Split by collection days regardless of neighbourhoods by 
combining truck routes

•• Split by collection days and neighbourhoods by combining 
truck routes

In order to decide on which separation to perform, it is necessary to 
know the modelled population. Neighbourhoods in a city can 

Figure 5. Waste sorting and curbside collect participation state diagram for each modelled week.
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separate the population into similar groups. For example, some 
neighbourhoods have few multi-dwelling units, whereas others have 
most of them. This is the case for Gatineau. In addition, each neigh-
bourhood is only collected on certain collection days. By knowing 
the Gatineau’s territory, the diversity of the population in the dataset 
is ensured by separating the collection routes independently of the 
collection days and the neighbourhoods. Therefore, for this specific 
city all the collection routes were randomly separated.

Standardization of waste data by 
selecting data characteristics

Data normalization involves converting the database to ensure 
that the format is consistent and that entries are comparable. As 
shown in Figure 6, an average of 144 truck routes are recorded 
each week for the region under study, representing an average of 
8.0 kg of waste collected per week per dwelling. However, this 
weight of material is not constant throughout the year. In the 
case of waste management, the large variation in MSW genera-
tion over the year requires descriptive analysis of the phenom-
ena in order not to discard data that would bias the analysis. The 
choice of sampling trucks during specific seasons, such as early 
winter or summer, may lead to an underestimation or overesti-
mation of the annual average waste generation rate and can also 
affect the composition of the waste stream. This is especially 
evident when a larger amount of green residues arrive during the 
summer. In addition, to keep the composition stable and consist-
ent with the city average, specific weeks were selected primarily 
during the spring season for descriptive analysis.

Furthermore, it can be assumed that the day of the week when 
a residence is collected does not affect the materials it generates, 
unlike the collection frequency (Tuckeret al., 2000). However, 
examining Figure 6(b) and (d) reveals that since different areas 
are collected on different days, the socioeconomic and demo-
graphic characteristics of the dwellings collected can vary, 
impacting the model’s calibration. To ensure robust calibration 
and testing, data points should be selected randomly throughout 
the week.

Calibration

Since the simulation model does not precisely replicate the waste 
generation rates and sorting habits of every dwelling, the symbol 
‘τ ’, which represents calibrated waste generation rates, is not a 
straightforward vector. Instead, it comprises a range of potential 
waste generation rate values, each calibrated using a specific 
training dataset.

Sensitivity analyses were performed on the number of trucks 
included in each training and test split. Therefore, the estimated 
values (Yi ) are the simulated generation rate per truck and the 
actual values (Yi ) are the truck collected weight data.

Figure 7 shows that by including a larger proportion of trucks 
during calibration, or training phase, the MSE distribution 
becomes narrower, likely due to overfitting. On the contrary, dur-
ing the test phase, the MSE distribution becomes more spread 
confirming the overfitting hypothesis. Thus, a compromise of 
60% of trucks being used in the training set was chosen for each 
of the 100 repetitions performed.

Figure 6. (a) Average waste collected per week per household for a 3-year collection period; (b) average waste collected per 
week per household per weekday; (c) average amount of trucks per year for a 3-year collection period and (d) average waste 
collected per week per household per borough.
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Features selection and outlier removal

If a truck can make several discharges in 1 day, its maximum 
weight capacity at any given time is 15 tonnes, whereas the aver-
age discharge weight is 8.4 tonnes. In addition, since trucks can 
discharge several times per day, an average of 19.9 tonnes of 
material per truck per day is recorded. However, because we do 
not know exactly what weight was loaded in each truck, it is rea-
sonable to assume that some datapoints (i.e. truck route and 
weight) are not representative and should be discarded.

The empirical law, often referred to as the sigma rule, is a 
statistical rule stating that for a normal distribution 95% of the 
observed data lie within 2σ of the mean and 99.7% within 3σ. On 
a bell curve, this technique allows one to classify a value as an 
outlier if it is outside one of these intervals (Borovcnik, 2007). 
After having ensured that the collected weights and the number 
of dwellings were positive and greater than zero, we assessed the 
impact of interval size criteria on calibration accuracy by testing 
four conditions: no data cut, a cut at 3σ, a cut at 2.5σ and a cut at 
2σ from the mean.

In Figure 8, we show the MSE calculated between estimated 
and actual generation rate values after datapoints judged outliers 
by the interval sizes were removed. This figure shows that, for all 
conditions tested, the predicted generation rates for multi-family 
dwellings are lower than for single-family dwellings although 
neither is exactly on the average of 8.0 kg dwelling−1 week−1. In 
addition, it can be observed that a cut at 2σ from the mean 
decreases the MSEs of the replicates but increases the amount 
generated per dwelling per week for multi-family dwellings. All 
the other cut sizes do not seem to have a clear effect on the MSE.

To understand this effect, Figure 9 presents the content of the 
usable databases as a function of the cut interval sizes. The usable 
databases generally have an average close to those without dis-
carded data for all parameters presented. Looking at the parame-
ter profiles with the discarded data, as the data are cut, the 
proportion of single-family dwellings and the rate of material per 

dwelling per week increases, whereas the average number of 
dwellings collected per truck decreases.

This suggests that the discarded trucks represent curbside col-
lections with higher-than-expected amount of materials.

However, in Figure 9(c), the 2σ cut has a somewhat different 
profile with an higher than average number of collected dwelling 
per truck. Hinting at a population with lower-than-average gen-
eration rate. No specific subpopulation must be discarded from 
the calculation. For instance, if multi-dwellings get discarded by 
the 2σ cut, leading to an increased MSE, then it is possible that a 
bias is introduce in the selected dataset. Thus, a cut to a value of 
3σ is proposed to ensure the data quality.

Parameters separation in usable 
subcategory

The choice of socioeconomic and demographic parameters 
should not be overlooked, as it can add a source of bias to the 
model. For example, Quebec municipalities often describes 
housing as single-family dwellings, duplexes and multi-family 
dwellings, separating 2–3-unit dwellings that often have access 
to a courtyard, from buildings with a larger number of units. 
Although previous studies have shown that for some cities these 
dwellings have a distinct and traceable behaviour (Lagneau, 
2018), this was not observed for our case-study region as shown 
in Figure 10. The reported data correspond to generation rates 
calibrated for the three selected housing type. Although results 
for single-family dwellings are apart from the other 2, results for 
duplexes overlap those for multi-family dwellings.

The calibration was then performed on only two types of hous-
ing: single-family dwellings and multi-family dwellings, with 
duplexes being considered multi-family dwellings. This calibra-
tion led to two distinct behaviours for these two housing-types 
(Figure 11). The stochastic aspect of the model allowed us to 
obtain not a single calibrated value, but rather a distribution of 
possible rates for a housing type. For the agent-based simulations, 

Figure 7. MSE comparison between the train/test split percentages.
MSE: mean square error.
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each agent will then be assigned a personal generation rate from 
this distribution according to their housing type. With a suffi-
ciently large number of agents, the resulting generation rate distri-
bution should match the calibrated one.

Performance analysis

Following the calibration, simulations were conducted based on 
the entire population of Gatineau. The simulated generated 
weight was compared to the actual weights produced each week 
on the territory for the specified time interval. For the simula-
tions, each household agent in the territory was assigned a 

random value of mixed waste generation rate per week from the 
distribution specific to its housing type. The overall predicted 
generation rate distribution for Gatineau is depicted in Figure 12. 
The simulation results indicate an average close to that of the 
actual Gatineau’s distribution with a difference of 0.96%. 
However, the actual standard deviation, represented by the dotted 
values for Gatineau’s data, is higher than the predicted one with 
a difference of over 84%. This suggests that the simulation results 
predict a much tighter generation rate distribution, indicating pre-
cision in value with less accuracy in variability.

Two key statistical measures, skewness and kurtosis, were 
computed to better characterize the nature of this distribution. 
Skewness, which quantifies the asymmetry of the distribution, 
was found to be 0.072. The skewness value is close to zero, indi-
cating a relatively symmetrical distribution (Shanmugam and 
Chattamvelli, 2015). In the context of waste generation, this sug-
gests that there is a tendency for some instances to exhibit higher 
waste generation rates than the average. Additionally, we calcu-
lated the kurtosis of the distribution, yielding a value of 0.039. 
This kurtosis value, indicates that the distribution is platykurtic, 
meaning it is less peaked and has thinner tails than a normal dis-
tribution. This implies that most waste generation rates are rela-
tively close to the mean, with fewer extreme values and that the 
waste generation rates are generally consistent.

Analysing the residues from each truck data in the test set 
(Figure 13) makes it possible to observe heteroscedasticity in the 
results. The error term is not constant between observations and 
increases with Yi  (tonnes/truck/day). The presence of outliers or 
omitted variables in the model is the main cause of this phenom-
enon. Although on a macroscopic scale, it is possible to correctly 

Figure 8. Impact of four sigma rule condition (colour) on the 
calibration accuracy (MSE) and dwelling type (shape).
MSE: mean square error.

Figure 9. Impact of the sigma rule on the discarded dataset profile for (a) single family dwelling proportion, (b) waste amount 
per dwelling per week, (c) average number of dwelling per truck and (d) curbside/container collect proportion.
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represent the population, in this model, too many parameters are 
neglected to provide an accurate representation of a single truck 
or a single household. This seems to be more apparent for multi-
dwellings as observed in Figure 14. The model should therefore 
be used on a population slightly larger.

Discussion

In the field of waste management and end-of-life product flow 
strategies, the significance of real-time geolocalized data cannot 
be overstated. Our work marks a significant advancement in uti-
lizing such data by establishing a standardized framework. This 
framework’s primary objective is to rectify the inherent biases 
that can infiltrate the process of data collection and analysis, a 
critical step in overcoming challenges exposed by Dias et al. 
(2021). By implementing this methodology, we have contributed 
to a more accurate representation of MSW generation, particu-
larly in terms of a potential weekly value distribution. The next 
three sections present the general ideas provided by the frame-
work as well as the limitations of the resulting predicted model.

Setting the data environment for a proper 
model

When creating a MSW generation model, it is important to con-
sider various data preprocessing techniques, such as data selec-
tion, data separation (training/test split) and outlier removal, to 
ensure model accuracy and data environment adaptability. 
Knowing the large uncertainty and variability in available data, 
our approach was to perform sensibility analysis on those pre-
processing techniques in order to select those with the most lim-
ited negative impacts on the model accuracy and precision.

For example, the training/test split value selection is a com-
mon technique used in machine learning to evaluate the perfor-
mance of a model with unseen data. By dividing the dataset into 
training and test subsets, we aim to strike a balance between 
ensuring that the model learns from the data without overfitting 
to it and verifying its ability to generalize to new, unseen data. 

Figure 10. Distribution of waste generation rate per dwelling 
per week calibrated with three housing types.

Figure 11. Distribution of waste generation rate per dwelling 
per week calibrated with two housing types.

Figure 12. Mixed waste production predicted per week 
compared to Gatineau’s official reported generation data.

Figure 13. Comparison between actual value observed and 
the expected value for the test dataset.
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The standard split is typically 70/30 or 80/20, with most of the 
data used for training (Brownlee, 2016). However, it is important 
to note that the choice of the split ratio is not one-size-fits-all. 
The ideal split ratio can vary depending on factors such as the 
dataset size and complexity, as well as the specific problem being 
addressed (Muraina, 2022). In our case, the framework we 
employed revealed the necessity of adjusting the split ratio, as 
indicated by the presence of overfitting (Figure 7) when the 
standard split values were used. This underscores the importance 
of tailoring the split to suit the unique needs and characteristics of 
the dataset and machine learning task.

Moreover, in the context of an MSW generation predictive 
model, outliers may represent unusual waste generation patterns 
that are not necessarily representative of the population as a 
whole. Removing outliers can improve the accuracy of the model 
by reducing the impact of these unusual data points. However, it 
is important to carefully consider the criteria used to identify out-
liers and to ensure that the removed data points do not represent 
significant information. Looking at discarded data profile (Figure 
9) is mandatory to ensure no distinct population is targeted.

Housing as a key modelling parameter

The results of our study highlighted the significance of housing 
types as a critical socioeconomic and demographic parameter for 
accurately predicting MSW generation rates. However, our find-
ings diverged from certain prior studies, such as (Lagneau, 2018), 
as we observed that the inclusion of duplexes in our model did 
not lead to an enhancement in its predictive accuracy. With a 
larger surface area than a traditional apartment, a duplex apart-
ment allows citizens to enjoy the benefits of city life, while 
adopting some of the characteristics of single-family dwellings. 

Their profile can therefore be sometimes closer to either multi-
family dwellings or single-family dwellings.

Several studies (Abbott, Nandeibam and O’Shea, 2011; 
Ferrara and Missios, 2005, 2012; Huang et al., 2011) deplore the 
fact that neglecting the effect of citizen behaviour is detrimental 
to the use of the models and the understanding of the studied 
phenomena. Decision support tools must therefore consider the 
heterogeneity of the population in terms of sociodemographic 
profile and household behaviour.

Similarly, bin size is a key parameter for recycling efficiency. 
In the event of a full container, only 55% of individuals deferred 
keeping the material until the next collection (Schilling, 2001). 
An increase in the size of recycling bins is known to increase 
recycling participation and diversion rates (Lane and Wagner, 
2013). Sharing a bin or container with other households may 
influence material sorting by the citizen and thus the amount of 
material going to landfill. This reinforces the idea that household 
behaviour in response to municipal incentives, as well as their 
socioeconomic ownership, has some impact on the total amount 
of material generated by a municipality and should be included in 
this type of study.

To accurately represent duplexes as housing units with dis-
tinctive waste generation behaviour in the context of Gatineau, it 
may be necessary to include additional socioeconomic properties 
in the description of agents. This approach recognizes that the 
characteristics and waste generation patterns of dwellings are not 
universally transferable across different regions, and regional-
specific factors play a significant role in shaping waste genera-
tion dynamics. Consequently, our study underscores the 
importance of tailoring predictive models to account for unique 
regional characteristics, thereby enhancing their accuracy and 
applicability in specific geographic areas.

Figure 14. Residue per truck for the test dataset.
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Moreover, the observed tightness in the mixed waste produc-
tion simulation, signifying precision with reduced variability, is 
a notable outcome. Although the simulation captured the aver-
age waste production of Gatineau well, the higher standard devi-
ation in the actual data highlights the complexity and variability 
inherent in waste generation. Over the course of the year, weekly 
waste production fluctuates based on seasonal changes (Mendes 
et al., 2013), consumption patterns (Zacarias-Farah and Geyer-
Allély, 2003) and holidays (Whitmarsh et al., 2018). These 
external factors contribute to the observed variability in actual 
waste generation rates, which the current simulation, with its 
tighter distribution, may not fully encapsulate. Incorporating 
these external parameters into the simulation model could 
enhance its capacity to mirror real-world variability in waste 
generation, providing a more comprehensive understanding and 
prediction of waste patterns. Therefore, further refinement of the 
model by introducing consumption-related parameters could 
contribute to achieving a more realistic representation of waste 
generation patterns and addressing the observed differences in 
standard deviations.

Predictive model limitations

Waste generation is inherently uncertain and can be affected by 
factors that are difficult to predict, such as changes in consump-
tion patterns or technological advances. External factors, such as 
climate change, environmental regulations or economic incen-
tives, can also significantly affect waste generation patterns. 
Although these factors are challenging to incorporate into a 
model, they play a pivotal role in explaining why waste genera-
tion patterns vary considerably across different regions. It’ is 
important to note that the results reported in this study are specific 
to the region of Gatineau, where the data were collected. However, 
the model framework developed here may offer valuable insights 
and serve as a foundation for similar studies in other regions or for 
different waste types, with the necessary adjustments to account 
for regional variations and specific waste characteristics.

Moreover, any model in MSW will be limited by the lack of 
accurate and up-to-date data, which can make it difficult to accu-
rately predict future waste generation.

The lack of an RFID chip in a waste generation model limits 
the accuracy and effectiveness of the model, reducing its ability to 
inform waste reduction strategies and improve waste management 
systems. We used a GIS artefact to overcome this limitation. 
However, by doing so the accuracy of the model is impacted and 
a sensible parameter is introduced to the model. This can affect 
the foundation of subsequent work but can answer municipalities 
perceived requirements in terms of accuracy and precision.

Conclusion and future work

In this study, we have presented a comprehensive framework that 
addresses critical challenges in the field of waste management, 
specifically pertaining to the prediction of MSW generation. The 
utilization of real-time geolocalized data offers an opportunity to 

enhance MSW generation modeling and inform sustainable 
waste management strategies. By presenting an adaptable frame-
work, complemented by the agent-based model construction and 
its series of sensitivity analyses, our research poses the founda-
tions for the development of highly sought prediction models of 
end-of-life product flows. Considering the large-scale implica-
tions and impacts of waste management and end-of-life product 
flow strategies, it is critical to conduct thorough analyses. Failure 
to do so may lead to inefficient and wasteful strategies, not 
adapted to evolving waste generation behaviours.

Although this research focuses on mixed waste in the city of 
Gatineau, the conceptual and methodological foundations laid 
down serve as a blueprint for similar studies, offering a versa-
tile and scalable solution for assessing waste generation dynam-
ics across diverse contexts. Waste collection routes that are 
non-uniform can pose substantial difficulties in model calibra-
tion. To effectively harness the power of geolocalized data, our 
study employed a comprehensive data transformation and 
hybridation process, coupled with innovative buffer integra-
tion. We tailored a reverse geocoding algorithm using buffers, 
enabling accurate dwelling-to-truck assignments. This flexibil-
ity is instrumental in ensuring that the framework can accom-
modate variations in data volume, ranging from a few collection 
trucks within a single city to the complexities of data collection 
from multiple municipalities, thus meeting the practical needs 
of waste management systems.

Future research will expand upon this foundation by using the 
framework to accommodate multiple collection types, making it 
adaptable to various waste management scenarios. Additionally, 
future work will delve into the behavioural aspects of dwellings 
within the waste generation process, particularly in the context of 
sorting decisions influenced by environmental attitudes. By con-
necting the predicted waste generation rates with dwellings’ 
recycling intentions in an agent-based model, we aim to provide 
municipalities with valuable insights for estimating waste quan-
tity and quality, as well as evaluating the environmental impact of 
their waste management strategies. These endeavours represent a 
step forward in advancing the sustainability and efficiency of 
waste management systems.
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