B. N. Carnio, B. Shahriar, A. Attiaoui, M. R. M. Atalla, S. Assali, Oussama Moutanabbir and A. Y. Elezzabi
Article (2024)
An external link is available for this itemAbstract
The complex relative permittivity of doped Ge₁₋ₓSnₓ thin films (realized using state-of-the-art growth techniques) are obtained by devising a methodology based upon polarization-dependent reflection measurements along with multi-layer Fresnel reflection equations. The developed approach is implemented to acquire the complex relative permittivity of a 170-nm-thick Ge₁₋ₓSnₓ film exhibiting a hole carrier concentration of 3.3 × 10¹⁹ cm⁻³ and x = 6.2%, with this Sn composition suggesting the film is on the cusp of exhibiting a direct bandgap. The investigation conducted on this thin film as well as the developed methodology are expected to further establish Ge₁₋ₓSnₓ as the primary semiconductor for on-chip light emission and sensing devices.
Uncontrolled Keywords
Subjects: |
2500 Electrical and electronic engineering > 2500 Electrical and electronic engineering 2500 Electrical and electronic engineering > 2523 Semiconductor fabrication and packaging 3100 Physics > 3100 Physics 3100 Physics > 3101 Atomic and molecular studies |
---|---|
Department: | Department of Engineering Physics |
Funders: | NSERC / CRSNG, Defence R&D Canada |
PolyPublie URL: | https://publications.polymtl.ca/57390/ |
Journal Title: | Applied Physics Letters (vol. 124, no. 7) |
Publisher: | AIP Publishing |
DOI: | 10.1063/5.0187087 |
Official URL: | https://doi.org/10.1063/5.0187087 |
Date Deposited: | 28 Feb 2024 14:05 |
Last Modified: | 25 Sep 2024 16:49 |
Cite in APA 7: | Carnio, B. N., Shahriar, B., Attiaoui, A., Atalla, M. R. M., Assali, S., Moutanabbir, O., & Elezzabi, A. Y. (2024). Probing the infrared properties of a p-doped Ge\(_{0.938}\)Sn\(_{0.062}\) thin film via polarization-dependent FTIR spectroscopy. Applied Physics Letters, 124(7), 072102 (6 pages). https://doi.org/10.1063/5.0187087 |
---|---|
Statistics
Dimensions