B. N. Carnio, B. Shahriar, A. Attiaoui, M. R. M. Atalla, S. Assali, Oussama Moutanabbir et A. Y. Elezzabi
Article de revue (2024)
Un lien externe est disponible pour ce documentAbstract
The complex relative permittivity of doped Ge₁₋ₓSnₓ thin films (realized using state-of-the-art growth techniques) are obtained by devising a methodology based upon polarization-dependent reflection measurements along with multi-layer Fresnel reflection equations. The developed approach is implemented to acquire the complex relative permittivity of a 170-nm-thick Ge₁₋ₓSnₓ film exhibiting a hole carrier concentration of 3.3 × 10¹⁹ cm⁻³ and x = 6.2%, with this Sn composition suggesting the film is on the cusp of exhibiting a direct bandgap. The investigation conducted on this thin film as well as the developed methodology are expected to further establish Ge₁₋ₓSnₓ as the primary semiconductor for on-chip light emission and sensing devices.
Mots clés
doping; electric measurements; infrared radiation; fourier transform spectroscopy; optical properties; resistivity measurements; thin films; chemical vapor deposition; regression analysis
Sujet(s): |
2500 Génie électrique et électronique > 2500 Génie électrique et électronique 2500 Génie électrique et électronique > 2523 Fabrication et mise sous enveloppe de semi-conducteurs 3100 Physique > 3100 Physique 3100 Physique > 3101 Études atomiques et moléculaires |
---|---|
Département: | Département de génie physique |
Organismes subventionnaires: | NSERC / CRSNG, Defence R&D Canada |
URL de PolyPublie: | https://publications.polymtl.ca/57390/ |
Titre de la revue: | Applied Physics Letters (vol. 124, no 7) |
Maison d'édition: | AIP Publishing |
DOI: | 10.1063/5.0187087 |
URL officielle: | https://doi.org/10.1063/5.0187087 |
Date du dépôt: | 28 févr. 2024 14:05 |
Dernière modification: | 25 sept. 2024 16:49 |
Citer en APA 7: | Carnio, B. N., Shahriar, B., Attiaoui, A., Atalla, M. R. M., Assali, S., Moutanabbir, O., & Elezzabi, A. Y. (2024). Probing the infrared properties of a p-doped Ge\(_{0.938}\)Sn\(_{0.062}\) thin film via polarization-dependent FTIR spectroscopy. Applied Physics Letters, 124(7), 072102 (6 pages). https://doi.org/10.1063/5.0187087 |
---|---|
Statistiques
Dimensions