C. R. Buratti, M. Veillette, A. Bridier, Carl-Éric Aubin, M. Lebrun, A. K. Ammaiyappan, E. Vanoli, C. Crawford, C. Duchaine and P. Jouvet
Article (2024)
Open Acess document in PolyPublie and at official publisher |
|
Open Access to the full text of this document Published Version Terms of Use: Creative Commons Attribution Download (2MB) |
Abstract
Background The contagiousness of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is known to be linked to the emission of bioaerosols. Thus, aerosol-generating procedures (AGPs) could increase the risk of infection among healthcare workers (HCWs).
Aim To investigate the impact of an aerosol protection box, the SplashGuard Caregiver (SGGC) with suction system, by direct analysis of the presence of viral particles after an AGP, and by using the computational fluid dynamics (CFD) simulation method.
Methods This prospective observational study investigated HCWs caring for patients with SARS-CoV-2 admitted to an intensive care unit (ICU). Rooms were categorized as: SGCG present and SGCG absent. Virus detection was performed through direct analysis, and using a CFD model to simulate the movement dynamics of airborne particles produced by a patient's respiratory activities.
Findings Of the 67 analyses performed, three samples tested positive on quantitative polymerase chain reaction: one of 33 analyses in the SCCG group (3%) and two of 34 analyses in the non-SGCG group (5.9%). CFD simulations showed that: (1) reduction of the gaps of an SGCG could decrease the number of emitted particles remaining airborne within the room by up to 70%; and (2) positioning HCWs facing the opposite direction to the main air flow would reduce their exposure.
Conclusions This study documented the presence of SARS-CoV-2 among HCWs in a negative pressure ICU room of an infected patient with or without the use of an SGCG. The simulation will help to improve the design of the SGCG and the positioning of HCWs in the room.
Uncontrolled Keywords
airborne virus transmission; COVID-19; intensive care unit; 3D simulation
Subjects: |
1900 Biomedical engineering > 1900 Biomedical engineering 1900 Biomedical engineering > 1901 Biomedical technology |
---|---|
Department: | Department of Electrical Engineering |
Funders: | Fonds de Recherche Québec - Santé, Institut TransMedTech, Ministry of Health of Quebec, Sainte-Justine Hospital, Dassault Systèmes |
PolyPublie URL: | https://publications.polymtl.ca/57388/ |
Journal Title: | Journal of Hospital Infection (vol. 144) |
Publisher: | Elsevier |
DOI: | 10.1016/j.jhin.2023.11.007 |
Official URL: | https://doi.org/10.1016/j.jhin.2023.11.007 |
Date Deposited: | 28 Feb 2024 14:05 |
Last Modified: | 01 Oct 2024 07:10 |
Cite in APA 7: | Buratti, C. R., Veillette, M., Bridier, A., Aubin, C.-É., Lebrun, M., Ammaiyappan, A. K., Vanoli, E., Crawford, C., Duchaine, C., & Jouvet, P. (2024). Effectiveness of SplashGuard Caregiver prototype in reducing the risk of aerosol transmission in intensive care unit rooms of SARS-CoV-2 patients: a prospective and simulation study. Journal of Hospital Infection, 144, 75-84. https://doi.org/10.1016/j.jhin.2023.11.007 |
---|---|
Statistics
Total downloads
Downloads per month in the last year
Origin of downloads
Dimensions