Orestes Gonzalo Manzanilla Salazar, Hakim Mellah et Brunilde Sanso
Article de revue (2023)
Document en libre accès dans PolyPublie et chez l'éditeur officiel |
|
Libre accès au plein texte de ce document Version finale avant publication Conditions d'utilisation: Creative Commons: Attribution-Pas d'utilisation commerciale-Pas de modification (CC BY-NC-ND) Télécharger (1MB) |
Abstract
This paper presents a privacy-preserving proof of concept for assessing human behavior in emergency scenarios using aggregated data from multiple WiFi access points. The proposed method focuses on preserving individual privacy by avoiding tracking and metadata analysis, while still achieving effective multi-user activity recognition. To implement our approach, raw data from the Eduroam WiFi network at Polytechnique Montreal was collected and analyzed using standard supervised and anomaly detection techniques. The initial test was on recognizing patterns of academic activity, serving as the foundation for our investigation. Subsequently, the same methodology was applied during an evacuation drill scenario to recognize anomaly situations. Through our research, we demonstrate the potential to assess human situations effectively while safeguarding privacy, providing a critical capability for the early detection of emergency situations.
Mots clés
Wireless networks; movement patterns; indoor behavior; machine learning binary classi- fication; anomaly detection; emergency management; data aggregation.
Sujet(s): | 2500 Génie électrique et électronique > 2500 Génie électrique et électronique |
---|---|
Département: | Département de génie électrique |
Organismes subventionnaires: | Natural Sciences and Engineering Research Council of Canada |
Numéro de subvention: | DG 05734 |
URL de PolyPublie: | https://publications.polymtl.ca/55996/ |
Titre de la revue: | IEEE Access (vol. 11) |
Maison d'édition: | Institute of Electrical and Electronics Engineers |
DOI: | 10.1109/access.2023.3306328 |
URL officielle: | https://doi.org/10.1109/access.2023.3306328 |
Date du dépôt: | 10 nov. 2023 10:03 |
Dernière modification: | 26 sept. 2024 14:27 |
Citer en APA 7: | Manzanilla Salazar, O. G., Mellah, H., & Sanso, B. (2023). Recognizing Emergencies and Multi-User Behavior Patterns Using Imperfect Data From Distributed Access Points. A Non-Intrusive Proof of Concept. IEEE Access, 11, 91234-91246. https://doi.org/10.1109/access.2023.3306328 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions