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ABSTRACT This paper presents a privacy-preserving proof of concept for assessing human behavior in
emergency scenarios using aggregated data from multiple WiFi access points. The proposed method focuses
on preserving individual privacy by avoiding tracking and metadata analysis, while still achieving effective
multi-user activity recognition. To implement our approach, raw data from the Eduroam WiFi network
at Polytechnique Montreal was collected and analyzed using standard supervised and anomaly detection
techniques. The initial test was on recognizing patterns of academic activity, serving as the foundation for
our investigation. Subsequently, the same methodology was applied during an evacuation drill scenario to
recognize anomaly situations. Through our research, we demonstrate the potential to assess human situations
effectively while safeguarding privacy, providing a critical capability for the early detection of emergency
situations.

INDEX TERMS Wireless networks, movement patterns, indoor behavior, machine learning, binary classi-
fication, anomaly detection, emergency management, data aggregation.

I. INTRODUCTION
Recognizing human behavior is relevant to enable the antici-
pation and management of human needs. Some behaviors or
activities are part of daily or weekly routines, while others
are unexpected and possibly of great impact or risk, such as
disasters, accidents and violent events. Individual movement
can be considered highly independent. However, population
movements are highly predictable, and their understanding
when in the face of catastrophes is very relevant to manage
these situations [1]. The problem of finding patterns in the
activities of multiple people, or multi-user activity recogni-
tion, however, has been given less attention than individual
activity recognition [2]. The study of human movement has
been researched via the following:

The associate editor coordinating the review of this manuscript and

approving it for publication was Kashif Saleem .

1) accelerometers or Global Positioning System (GPS)
devices,

2) vision-based recognition of human behavior [3], [4],
3) classical radio methods, such as SONAR and

RADAR [5],
4) studying the effects of the human body on the physical

characteristics of waves (amplitude and frequency) [6].
5) and integrating data from more than one method [7],

[8]
Our research addressesmethods that do not require special-

ized sensors that explicitly measure position and movement,
such as those in (1). We know that (2) vision-based methods
can be affected by light conditions, obstacles, and limits in
the field of vision and involve privacy issues. Depending
on the Doppler effect, (3) SONAR- and RADAR-like meth-
ods are known to be dependent on movement direction and
are degraded by the occurrence of multiple paths. Finally,
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FIGURE 1. Scheme of the approach to use wireless technology to
recognize human behavior.

FIGURE 2. Requirements for each subsystem in sensing human behavior
via wireless communication signal perturbation.

(4) physical alterations in waves due to human presence is an
area of research that has been varied and prolific. An inter-
esting survey of contactless sensing methods used to study
human spatial behavior, activities, and even mental health
indicators is presented in [9]. The reader is advised to follow
the survey presented in [2] to learn about the state of the art
in multi-user activity recognition in general.

Due to the focus of this work on wireless technologies,
we narrow our analysis to the premises of interest behind
such wireless-based techniques, as presented in Figure 1.
As depicted, at a higher level, we can describe the process
as follows: both humans and the environment in which they
dwell affect the way wireless signals are received. As a con-
sequence, perturbations and traces of wireless signals can be
analyzed to recognize human behavior. Every wireless-based
technique has different requirements from three subsystems:
humans, the environment under study, and the wireless net-
work technology generating the signals. In Figure 2, we clas-
sify some important aspects of what is required from each of
these subsystems.

• Human subsystem: Some techniques require some coop-
eration from humans to train machine learning models
and follow specific instructions to enable the methods
to work [10], [11], [12], [13], [14], [15], [16], [17], [18],
[19], [20], [21], [22], [23], [24]. Some require humans
to carry with them a wireless device or install a specific
program on their mobile devices [10], [11], [12], [13],
[14], [15], [19], [20], [21], [23], [24], [25], [26], [27],
[28], [29], [30], [31], [32], [33].

• Environment subsystem: Some techniques require a sta-
tionary (or even static) environment [10], [11], [12],
[13], [14], [15], [16], [17], [18], [19], [20], [21], [22],
[23], [24], [25], [26], [28], [29], [30], [31], while some
are robust to changes in the environment [27]. Some
methods require the environment to be prepared in a
particular way to achieve their goals [11], [13], [14],
[15], [16], [19], [20], [22], [25], [26], [27], [34], while
others can be applied without any special preparation of
the environment [18], [21], [23], [24], [28], [29], [30],
[31]. Additionally, most human behavior recognition
efforts need to be applied indoors and in small controlled
spaces.

• Wireless network: Some methods require a special setup
of wireless devices [10], [11], [12], [13], [16], [18], [22],
[23], [24], [25], [26], [27], [29], [30], [31], [34], [35],
while others can be used with the wireless infrastructure
as it is already installed [19], [28].

In Figure 2, we have placed as the first option for each
subsystem, marked in cursive, the option that is less stringent
and therefore more desirable. That is, we would prefer meth-
ods that can be put in place while people maintain ‘‘natural’’
behavior, using spaces and wireless infrastructure as they are
with no extra costs in equipment, and should be applicable in
large spaces. Such a combination of requirements, however,
is rarely satisfied.

These observations motivated us to pose the follow-
ing question: What can be achieved with everyday, basic,
widespreadWiFi technology (without requiring extra devices,
special adaptation of spaces, or active cooperation from
humans)?. Here, we propose an alternative to use these data,
with a special interest in unexpected and risky situations, such
as disasters or catastrophes. What we explore in this paper is
generally aimed at detecting or identifying events that may
simultaneously affect large groups of people in buildings with
a single WiFi network, adding, whenever possible, some extra
constraints:

1) Avoid keeping tracking information (to avoid privacy
issues).

2) Avoid complex noise filtering (embracing the natural
noisy nature of the data and traces).

3) Avoid data cleaning (data coming from devices that are
stationary).

4) Avoid complex feature engineering.
5) Avoid sophisticated dimensionality reduction

techniques.
In our experiments, we pose the following questions and

use machine learning techniques on our data to answer them:
1) Can we discern ‘‘routine’’ behavior patterns of groups

of people, such as distinguishing working time from
nonworking time? (called Problem I in this paper)

2) Can we use machine learning to detect emergency sit-
uations? (called Problem II in this paper)

It is clear that distinguishing working time from
non-working time is not a problem that would require any
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ML solution. However, we used Problem I to first validate
our hypothesis that routine human behaviour can be extracted
from very rough wireless information. Once we got good
results on Problem I, we decided to set the collection of data
for the next evacuation drill.

We are very well aware that evacuation drills do not corre-
spond to real emergencies. Evacuation drills are slow paced
events in which people carefully listen to instructions and
calmly find the closest exit. However, given the rarity of
real emergencies and therefore the difficulty of obtaining
real-life data for those events, we believe that the evacuation
drill provides an excellent opportunity to study an event
that is the closest to an emergency situation. The idea is to
create a proof of concept to incite stakeholders to maintain
data that maps non-intrusive wireless information to human
behaviour so that more refined modelling can be achieved
for different types of emergency situations (fire, criminal
situation, health emergency, etc.) to have tools for early
detection.

Early detection is important to answer as soon as possi-
ble the emergency situation and to prevent the creation of
stampedes, that although rare, can hinder the well-being of
the people involved when they occur.

Our proposed methodology involves aggregating data in
time intervals. Other articles have focused on WiFi traces in
different ways to find patterns related to human behavior,
network usage, or the nature of the usage of the different
spaces in the environment. In [36], the traces of connection
from mobile phone users to WiFi access points (APs) are
analyzed to predict the time that will elapse until they connect
to another AP. In [37] and [38], the counts of users connected
to each AP are analyzed over time to classify the APs to
understand the dynamics of usage that can be expected in
each part of the WiFi network. Reference [39] uses user
counts per AP to create an interactive 3D visualization of a
university campus that shows the size of the crowd present
in each building. In [40], users’ connections to APs were
used to classify APs according to their behavior and to iden-
tify periodicity in people’s mobility, with the goal of using
this information to help create models of human mobility.
In [41], the connections of users to each AP are used to
model their mobility. The evolution of the number of users
in each AP is analyzed over time. The goal is to understand
mobility based on real data. In [42], connection logs are
analyzed to infer the type of activity that takes place around
the APs, which is then validated by comparing the results
with information on the usage of each space provided by the
university.

None of the aforementioned works, however, addresses the
same problem on which we focus in this paper, which is to
use very coarse and aggregated WiFi traces to detect human
patterns, particularly in the case of emergencies.

To summarize, the main contribution of this article is to
propose a methodological proof of concept to detect human
activities, including emergency situations, based on coarse
wireless data. In particular:

1) We propose a time-aggregation strategy for wireless
communication traces that is easy to implement and
helps preserve the original shape of the datapoints.
We show, for the experiments performed in this work,
the impact of each type of aggregating element on
the performance of our machine learning techniques.
This is a technique that has the potential to be used in
other types of problems involving data from wireless
networks.

2) We propose a new way to analyze WiFi traces without
noise filtering, data cleaning or tracking of individual
devices to recognize simultaneous behavior in build-
ings that provide a widespread WiFi network. This
makes the method cheap, easy to implement, and there-
fore widely applicable in a very short time. We should
emphasize, however, that this is limited to behaviors
that can be identified due to schedules or planned drills
or based on data gathered in previous real occurrences
of disasters or catastrophes.

We will now present the problem and our assumptions in
the following section.

II. THE PROBLEM
The main assumption of this paper is that we can detect the
occurrence of events in spaces served by a wireless network
if these events cause large enough groups of people to change
the pattern of their ambulatory movements. We focus in par-
ticular on investigating the feasibility of doing so based on the
footprints that their ambulatory movements make on aggre-
gations on data from WiFi AP logs. We now discuss some of
the issues related to the self-imposed stringent constraints on
solving the problem.

A. USER PRIVACY
One of the motivations behind the choice of working on
aggregated nontracking data is a desire to look for a better
solution in the balance between the need for protection of
individual privacy and the need for innovation [43]. It is usu-
ally accepted that this is a challenging trade-off. Most work
done in the recognition of human ambulatory behavior relies
on making use of information that is sensitive. Tracking and
packet-generation data are particularly suitable to reconstruct
even more knowledge about users [42], [44], [45], such as
their type of activity, role, type of device, or even identity,
which may remain anonymous. For this reason, we propose
a method that not only does not track individuals as they
traverse the space under study but actually uses aggrega-
tions of counts of people, making it unfeasible to reconstruct
individual information from the data that is used as input
for our aggregation-based preprocessing procedures and our
machine learning models and therefore does not violate user
privacy.

B. DATA QUALITY CONSTRAINTS
Among the efforts to keep the method as easy to imple-
ment as possible, we started our experiments by purposefully
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skipping several steps that could augment the richness of the
data that is used in our models. We also accept the fact that
there is valuable information that is technically unfeasible to
obtain due to the nature of the method used to gather the data.

For instance, some aspects make our data systematically
incomplete, which is expected to make our task harder. In par-
ticular, we rely on Access Point (AP) logs, which implies that
the behavior of people who are not carryingWiFi-capable and
WiFi-active devices is ‘‘invisible’’ for our method.

Furthermore, several factors introduce ‘‘noise’’ and may
hide the behaviors we might be looking for in the data:

• Due to the anonymity, devices returning after discon-
necting or being away from the range of the APs are
indistinguishable from newly arriving devices.

• Handovers among APs can be triggered by connection-
quality problems. We are aware that trying to interpret
changes from one AP to another as a consequence of
movement therefore might introduce noise to the data.

• Similarly, it is well known that devices can quickly
switch between two or more APs, a phenomenon known
as the ‘‘ping-pong effect’’. Similar to the previous issue,
this introduces the illusion of quick movement of a
device when it may actually be perfectly static.

• The assumption that human ambulatory behavior is
associated with handover among APs is derived from
the assumption that the AP that serves a device can
somehow be a symbolic representation of its location in
space. We acknowledge the fact that the assumption is
imperfect, as the AP providing service may not be the
closest one to a device.

• We label data based on some predetermined schedules
that we expect to have some effect on human behavior
(or at least a significant fraction of the people present in
the building). This assumption might differ from reality.
For example, not every employee follows a predeter-
mined working hours schedule. Theymay arrive or leave
earlier or later than the expected times.

In this paper, we propose an approach to ‘‘live along’’ with
these imperfect and noisy conditions and investigate whether
appropriate preprocessing and use ofMLmodels to recognize
the patterns of interest is good enough to obtain useful results.

III. MODELS PROPOSED
In this work, we consider three elements that are modeled:
the targeted event, which is assumed to provoke a change
in human ambulatory behavior, the network on which we
assume said behavior will leave a footprint, and the machine
learning models we will use to try predict one based on the
other.

A. TARGETED HUMAN BEHAVIOR
For simplicity, we will define ‘‘targeted human behavior’’
as the expected change in shared mobility behavior along
the space under study by some subset of the population of
dwellers as a consequence of an ‘‘event’’ of interest. However,

FIGURE 3. Count of devices connected to each AP on one floor of the
building.

it is important to keep in mind that said behavior is a proxy
to detect an event of interest. We can describe the relevant
differences in the types of targeted behaviors as follows:

• Frequency: Some may take place as part of an estab-
lished routine, previously scheduled, while others are
rare, unexpected and possibly undesirable, such as those
that provoke crises, danger and fear among the dwellers
of an indoor space.

• Spread among dwellers: The human response to some
events may be exhibited by everyone in a building or by
some segments of it. Examples of partial spread of the
behavior are cases where it is expressed only by those
with a specific role, or those in the vicinity of a place,
if the eventś effect is local.

In this work, we consider two main problems:
• Problem I - Detecting working hours: For this problem,
we seek to discriminate if a set of AP logs from a
building was gathered during pre-established working
hours, or not. The targeted human behavior is therefore a
frequent behavior but spread only among a subset of the
dwellers of a building (i.e., those employees following a
work schedule of office hours).

• Problem II - Detecting evacuation drill: The event tar-
geted for this problem is the exiting of the building
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during an evacuation drill. This behavior is expected to
be fully spread among all building dwellers, and it is a
rare event. This pattern is of particular interest, as it is a
moment in which people behave in a way that is unusual
and may be considered similar to that of an emergency
situation.

B. THE WiFi NETWORK
Our experiments make use of connection logs from the APs
of the eduroam wireless network available in one building
of Polytechnique Montreal in Canada (Fig. 3). Most devices
were connected to the network, but a proportion of them
were just in the range of an APs but were not connected,
either because their owners did not have the credentials or the
setup of the network had not been performed. Each device
appearing in the logs received a hash as an identifier to
preserve privacy as part of the script run by the daemon.

When pulling the data to apply the methods proposed
here, we ignored some information that was available in the
sampling with Cisco Connected Mobile Experiences (CMX)
application. Specifically, we avoided making use of:

• location estimates for devices,
• APs spatial coordinates,
• signal strength reported for each device, and
• connection status,

C. AGGREGATION MODEL
Data aggregation over time is frequently performed by com-
puting minima, maxima, averages and some measure of dis-
persion. It is well known that central and dispersion statistics
(averages and variances, as typical examples) can have simi-
lar values for different original distributions. The aggregation
process acts like a filter that hides the shape of the original
distribution of the data.

In this paper, we evaluate the effect of different aggregation
strategies.

In particular, we tested:
• Baseline aggregation statistics: mean and variance.
• Baseline range measurements: max and mean.
• Percentiles.
• Higher-order momenta: kurtosis and skewness.
• Average estimations of derivatives: first and second.
What we call ‘‘first derivative’’ average estimations con-

sists of computing the average changes in the device counts
in consecutive timestamps. A positive value indicates that on
average, there is an increase in the device counts, while a
negative value indicates the opposite. Similarly, the second
derivatives are the average change in consecutive first deriva-
tive estimations.

We started using a ‘‘baseline’’ combination of the statistics
taken from the device counts (mean and variance) and some
specific combinations of these baseline statistics with the oth-
ers mentioned above. In section V, we will give more details
about the sets of statistics that were used in the experimental
parameter sweep. We call the set of statistics and values

FIGURE 4. Data processing, aggregation and ML training process.

computed to describe the dynamic behavior of the original
data simply ‘‘statistics’’ for the sake of brevity.

D. MACHINE LEARNING MODELS
We used a binary classification problem approach to tackle
problems I and II (see subsection III-A).

Supervised binary classifiers require a pair consisting of
(a) input features describing a data point (independent vari-
able) and (b) the target values or label of said data point
(dependent variable). After a binary classification model is
trained, we expect the output of the model to match (mostly)
the target values. In our work, the inputs of a data point (a
specific aggregation interval) are the vectors corresponding
to the aggregation ‘‘statistics’’ (introduced in subsection III-C
and explained in detail in V) of the device counts for each AP.
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The labels or target values, on the other hand, depend on
the problem we aim to solve, as follows:

• In problem I, which addresses the scheduled working
hours, the labels are ‘‘nonworking hours’’ and ‘‘working
hours’’.

• In problem II, which addresses detecting the occurrence
of the evacuation drill, the labels are ‘‘nondrill’’ and
‘‘drill’’.

In Fig. 4, we represent a simplified scheme of how traces
of n APs are processed to obtain the device counts for each
timestamp and then how they are aggregated for each interval
considered. The resulting data structure for each data point
(corresponding to a single time interval) is a vector that adds
to the ‘‘statistics’’ of each AP (feature vector) an indicator of
the label or target value.

Once we have the features matrix and the labels (targets)
vector that will be used to train our Machine Learning (ML)
models, we need to address an issue that is present in both
problem I and problem II: class imbalance. There are many
more data points corresponding to the behavior we want
to detect (working hours or the evacuation drill) than those
corresponding to moments where those behaviors are not
exhibited. This makes any trained binary classifier be biased
to give as an output the class corresponding to the majority.
This is because guessing the majority class will produce the
right answer more frequently. For this reason, the next step in
the process described in Fig. 4 is data augmentation.
In our case, both intervals corresponding to ‘‘working

hours’’ and ‘‘evacuation drills’’ were a set that contained the
minority of the data points. In section IV, we explain in detail
how the data were not only gathered, processed, aggregated,
labeled and filtered but also augmented.

We trained several binary classification techniques using
10-fold cross-validation to select the best model from a
pre-established grid search across the hyperparameters of
each model. The best model for each classification technique,
fully trained, was then evaluated using data previously sepa-
rated as the testing set to obtain the performance indicators
reported in this paper.

We used the following binary classification model models:

• extra trees,
• logistic regression,
• random forests,
• bagging trees,
• shallow neural networks,
• linear Support Vector Machines (SVMs),
• decision trees,
• gradient boosting trees, and
• naive Bayes.

The performance was evaluated by computing False Posi-
tive Rate (FPR), Detection Rate (DR) and Receiver Operating
Characteristic (ROC) Area Under the Curve (AUC).

IV. THE DATASET
We now describe the process, which involves:

FIGURE 5. Database diagram, with the fields used in our work.

TABLE 1. Typical raw data sampled from AP logs.

1) Data gathering
2) Data aggregation
3) Inclusion of contextual data; and
4) Data augmentation and filtering

A. DATA GATHERING
The WiFi APs logs were gathered using the Cisco CMX
monitoring tool, which was used regularly by the network
administrator. A daemon was implemented to refresh the web
interface to sample the information available from the devices
that are detected by each AP. The sampling frequency was
approximately two samples per minute. The data included
everyAP in the building known as Lassonde (see a plan of one
floor of the building in Fig. 3) and encompassed a period of
17 days. During this interval, except for a planned evacuation
drill, no other unusual event took place at the institution.

Usernames and MAC addresses were assigned a unique
hash as soon as they were first detected by an AP of the
network (see an example of the raw data in Table 1). The
way the script was designed, if a device was detected by
an AP again (after leaving the building or being turned off
for some reason), it received a new hash. The devices that
were gathered in this way included even some that may not
have been connected to theWiFi network. This is because the
query on the AP logs included those devices that sent a probe
frame, a type of packet that is sent when the device attempts
to find a nearby network to connect, which can happen even
when the WiFi is turned off on laptops and smartphones.

The raw data lacked any information about the type of
device (mobile or not) or the type of community member that
owned the device (faculty, alumni, employees and visitors),
and in our work, no efforts were made to infer or reconstruct
this information. Similarly, we did not implement any script
to determine whether one device appeared simultaneously in
the logs of more than one APs, nor did we estimate in any
way the distance from a device to the APs to determine which
was the closest.

The network administrator provided the information as
a MySQL dump with two tables: one with AP-sampling
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timestamps and one with the actual traces, linked among
themselves via sample IDs (see Fig. 5). In a real-time imple-
mentation of the techniques we have developed in this paper,
data would need to be fed into a database as a stream. How-
ever, such a development was beyond the scope of our work.

B. DATA AGGREGATION
The data used to feed our ML models were not those of the
counts. Our approach consisted not of recognizing patterns in
a set of data from a single timestamp but instead of aggrega-
tions of several timestamps. There are two main reasons to
use aggregations:

1) This kind of data is generated as a stream. Therefore,
when storing data in its original form or in stamp-by-
stamp counts, the data storage requirements can easily
become a burden. This is the most frequent motivation
behind the aggregations of communications traces.

2) Having statistics and estimates aggregating several
traces in a period of time allows us to ‘‘see’’ changes
in the distribution between one interval and the other
that can be more informative than observing a single
instantaneous count. For example, a very high kurtosis
indicates that the number of devices is not changing,
or a negative estimate of the first derivative indicates
that the number of people connected to the AP is
increasing.

We experimented with several sizes for aggregation inter-
vals (5, 10 and 15 minutes). For each experimental aggre-
gation size, we ran a script that computed, from the JSON
file that contained the device counts, the ‘‘statistics’’ men-
tioned in subsection III-C describing the distribution and
dynamic behavior of the device counts within each interval.
The details of the device count ‘‘statistics’’ used to train ML
models in each of our experiments are explained in section V.
The ‘‘statistics’’ were stored as CSV files, where each row
corresponded to the timestamp identifying each aggrega-
tion interval, and columns contain the values computed for
each AP.

C. INCLUSION OF CONTEXTUAL DATA
We added labels to our CSV files with aggregated data
columns that indicated the patterns we wanted to be able
to recognize. We also included additional contextual data in
extra columns, which helped us filter the data (data filters
used are explained in subsection IV-D).
We added to each row of the CSV files:

• A label that indicated whether the evacuation drill was
taking place (specifically, the moments in which people
were exiting the building, not including their return).

• Whether an interval corresponded to the start (first
30min) of the lunch hour scheduled in theworking hours
for administrative staff.

• Whether an interval corresponded to the end of thework-
ing hours (first 30 min after the working hours ended).

To decide whether an interval of aggregation can be labeled
as belonging to the set corresponding to one of the target
behaviors (working hours or evacuation drill), our script
compares the start and end timestamps of the interval being
aggregated, with the start and end of the interval in which the
target ambulatory behavior is expected to happen. If the two
overlap, the label corresponding to the behavior is applied.

D. DATA AUGMENTATION AND FILTERING
As mentioned in subsection III-D, the two problems
addressed presented class imbalance. There are two main
sampling approaches to tackle the problem of class imbal-
ance: undersampling, which in our case implies losing most
of our data, and oversampling.We chose to implement a strat-
egy inwhichwe synthetically oversampled theminority using
the Synthetic Minority Oversampling Technique (SMOTE)
because it creates plausible synthetic minority class samples.
Samples generated via SMOTE are considered ‘‘plausible’’
in the sense that they are similar, or close in feature space,
to the rest of the minority set data points and therefore are
widely used and assumed to be better than simple random
oversampling.

After the data were augmented, two types of ‘‘filtering’’
were used: (a) we used Principal Component Analysis (PCA)
on the data, which can be considered a statistical filter that
reduces the dimensionality of the data, and (b) actual filtering
by columns or rows. The motivation for actually filtering
the dataset is an experimental decision that is mentioned
in section VI after performing our base experiments with
problems I and II.

As shown in Fig. 4, after the data were augmented and
filtered, they were separated into training (10-fold cross-
validation) and testing sets.

V. EXPERIMENTAL SETUP
Our main goal is to test our approach to find shared human
ambulatory patterns of interest. One type of pattern of interest
is ‘‘massive fleeing’’, which may be associated with risky or
dangerous events such as explosions, catastrophes or terrorist
attacks. The WiFi logs of APs of a building during periods
that contained both ‘‘mundane’’ routine behaviors as well as a
drill exercise share some characteristics with the type of risky
patterns in which we are interested. Our experimental setup
consisted of starting with a ‘‘mundane’’ pattern, in this case,
our problem I: that of detecting how people who follow an
office-hours schedule are actually in working, solely based
on the fingerprints obtained from the WiFi logs. As will be
detailed in section VI, this task was performed successfully.

We then proceeded to use our method for our evacuation
drill detection task, problem II.

We tried different aggregation sizes and different combi-
nations of ‘‘statistics’’, experimented with and without PCA,
and tried several ML models to determine what conditions
would give the best performance in discriminating the pat-
terns of interest of each problem and subproblem.
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We performed 2377 experiments, produced by sweeping
across the following ‘‘levels’’ for each of the experimental
parameters:

• 9 binary classification models;
• Use or not of PCA;
• 3 different sizes of the aggregation intervals: 5, 10 and
15 min;

• 11 different combinations of statistics of the device
counts; and

• 4 tasks (problems I and II and two additional subprob-
lems that were motivated by some of our results).

The 11 combinations of statistics used for data aggregation
are as follows:

1) Mean and variance,
2) mean, variance, minimum and maximum,
3) mean, variance and five percentiles (0.05, 0.25, 0.50,

0.75, 0.95),
4) mean, variance and kurtosis,
5) mean, variance and skewness,
6) mean, variance and an estimate of the first derivative,
7) mean, variance and an estimate of the first and second

derivatives,
8) mean, variance, minimum, maximum and five per-

centile ranges,
9) mean, variance, kurtosis and skewness,

10) mean, variance, min, max, percentiles, kurtosis and
skewness.

11) mean, variance, min, max, percentiles, kurtosis, skew-
ness, and first and second derivatives.

In this paper, we refer to a specific combination of lev-
els in each experimental parameter as an ‘‘experimental
condition’’.

VI. ANALYSIS OF RESULTS
Most of our results were good. The fact that a large majority
of the experimental conditions were very similar made it
difficult to discern which was the best ‘‘level’’ for each exper-
imental parameter by simple comparison of ROC AUC, FPR
or DR values. To determine which experimental condition
level was the best, instead of averaging the effect of a single
condition among several levels of the other experimental con-
ditions, we took what we call a ‘‘popularity’’ approach. The
procedure followed to determine ‘‘popularity’’ is as follows:

1) Sorting all the experimental results according to the
classification performance (ROC AUC);

2) Analyzing the sorted list of results and selecting the
top-performing experimental conditions; and

3) Computing the frequency of each experimental param-
eter ‘‘level’’, from this set of top performers (calling the
more frequent parameter levels the top performers).

In the scenarios where there was extremely low variability
among the values of ROCAUC, the procedure was performed
by sorting based on FPR. The procedure was repeated by
observing the frequency of each of the experimental param-
eter levels when taking the low end of the sorted list (the

‘‘bottom’’-performing experiments). We looked for consis-
tency in experimental parameter levels based both on their
more frequent occurrence in the top-performing set and their
less frequent occurrence in the bottom-performing set. When
both things happened, we said the experimental parameter
level was ‘‘popular’’.

This approach shows clearer patterns and interactions of
experimental parameter levels than making statistical perfor-
mance average comparisons.

A. STRESSING THE METHOD
Because our results for problem II were particularly good
(FPR was never higher than 0.5 %, for any of the experimen-
tal conditions), we designed two new experiments to stress
the method and explore its limitations: II-A and II-B. Both
subproblems implied limiting (filtering) the information that
was fed to the ML models in two ways (depicted in Fig. 4
after the step of data augmentation):

1) For subproblem II-A, we filtered to randomly eliminate
columns, effectively omitting most of the features used
in the problem.

2) For subproblem II-B, we filtered rows, leaving only
those of the majority class that were expected to be
most similar to the minority class.

The first derived subproblem, which we call problem II-A,
repeated the experiments while taking the device counts of
only a randomly chosen 10 % of the APs. The second derived
subproblem, called problem II-B, consisted of limiting data
from ‘‘normal’’ intervals (not during the evacuation drill)
so that we considered only those where a large proportion
of people with a pre-fixed schedule were expected to leave
the building at the same time (namely, at the start of the
lunch hour and the end of the working hours). Problem II-B,
therefore, only kept ‘‘normal’’ behaviors that were expected
to be the ‘‘most similar’’ to what would happen during the
evacuation drill exercise, under the assumption that the task
of discriminating between the two patterns would be more
difficult.

B. THE SEARCH FOR THE ‘‘BEST’’ EXPERIMENTAL
CONDITIONS
In Table 2, we present the patterns observed for the ‘‘popu-
larity’’ of each of the experimental conditions. With respect
to the statistics used (first row of Table 2), for problems I
and II-A, we could not find a clear preference. All the com-
binations of statistics used seem to produce excellent results.
For problems II and II-B, however, we observed some prefer-
ences. In problem II, the most present among the best results
were those that included only 1 or 2 shape-related statistics
(such as asymmetry and kurtosis), while in problem II-B,
those sets that involved the most complex statistics along
with minimum andmaximumwere the most frequently found
among the best results.

There was a clearer pattern when observing the ‘‘popu-
larity’’ of ML models (second row of Table 2). While, for
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problem II-B, all binary classifiers were present among the
best results in similar quantities, for problems I, II and II-A,
extra trees were systematically the most popular (especially
for problem II). In the table, we present the three most fre-
quent, in order of their frequency (in descending order).

The size of the aggregation intervals (third row of Table 2)
was mostly nonconclusive, except for problem II-A, where
the 15-minute aggregations were more frequent among the
best-performing experiments. Similarly, the use of PCA
(fourth row of Table 2) presented no significant preference
at all.

In Table 3, we show our findings for those experimen-
tal conditions that presented interesting interactions. When
observing the joint effect of the models used versus the use
or not of PCA for dimensionality reduction (first row of
Table 3), we found that some models (which are not the
most ‘‘popular’’ ones) were more popular when used with
PCA (ANNs, logistic regression, random forests and bagging
trees). For subproblems II-A and II-B, only ANNs seemed to
be more popular when PCA was used.

Analyzing the ‘‘popularity’’ of the experiments under inter-
actions between the sets of statistics used and the binary clas-
sifier used for pattern discrimination (second row of Table 3),
we found that extra trees, the predominant model, along
with logistic regression, performed perfectly for problem I
when used with any of the sets of statistics. For problem II,
we observed that all the models benefited frommore ‘‘sophis-
ticated’’ statistics (i.e., those beyond simply using mean and
variance). Interestingly, for problem II-A, using only 10 % of
APs, extra trees had systematically perfect results for every
set of statistics used. For problem II-B, the only evident
systematic interaction between model choice and statistics
used was that ANNs performed better if 2 or more complex
statistics were used (beyond mean and variance).

There are three experimental conditions for which there
are no clear recommendations: choice of statistics, size of the
aggregations, and use of PCA. However, given that extra trees
were consistently and frequently included among the sets of
best experiments, we can assign it as the model of choice for
our data in all our problems and again study the statistics,
aggregation size and use of PCA. Additionally, given that
problem II and its subproblems II-A and II-B are extremely
easy to solve, we can focus on the best levels for aggregation
size and PCA for problem I.

In problem I, we averaged across the three aggregation
sizes to more closely observe the performance obtained for
each set of statistics with or without PCA. We can see
that the set of statistics # 3 (baseline and kurtosis) is the
best one when using PCA and the second-best one without
using it (see Fig. 6). However, without PCA, the best set of
statistics (which includes the baseline, minimum and max-
imum, percentiles, kurtosis and skewness) also has a high
value of variance in the ROC AUC (among the 3 different
aggregation sizes), which is not the case with the set of statis-
tics # 3. Therefore, we consider that the more consistently
well-performing set of stats, with or without PCA, is set # 3.

Regarding PCA, in Fig. 6, it is clear that with extra trees,
not using PCA is systematically better. Before jumping to
conclusions regarding PCA, we decided to study PCA better
by committing not only to the use of extra trees but also
to the set of statistics # 3. This resulted in the performance
values depicted in Fig. 7, in which there are no averages
taken. In this figure, we can confirm that not using PCA is
the best option across all interval sizes tested. Interestingly,
the gap between the performance values obtained using PCA
seems to diminish as the size of the aggregation intervals
increases. The best performance for problem I is definitely
obtained using extra trees without PCA. Aggregations of
5 and 15 minutes give almost identical performance, with
15 being the best one.

C. RECOMMENDATIONS TO DISCRIMINATE WORKING
HOURS PATTERN
When trying to detect whether an interval corresponds to
working hours, the best solution is to:

• Use extra trees.;
• Use the mean, variance and kurtosis of the device counts
for each AP;

• Not use PCA; and
• Aggregate data in intervals of 15 minutes.
In our experiences, this achieves:
• ROC AUC: 0.974
• FPR: 0.00 %
• Detection Rate: 94.83 %
We conclude with this base problem that the general task

of recognizing shared human behavior is feasible.

D. RECOMMENDATIONS TO DISCRIMINATE THE DRILL
PATTERN
When trying to detect whether an interval encompasses the
moments in which the evacuation drill was in process, the
best solution is to:

• Use extra trees;
• Use mean and variance (all sets of statistics work,
so using the simplest one seems best);

• Use PCA optionally (i.e., its use has no impact); and
• Aggregate data in intervals of 5 minutes (the use of other
intervals makes no difference, but being able to discern
from data of smaller intervals is best).

In our experiences, this achieves:
• ROC AUC: 1.000
• FPR: 0.00 %
• Detection Rate: 100.00 %
We should note that these recommendations hold for the

more challenging problems of achieving the task with:
• only 10 % of the APs (problem 2-A), and
• comparing only with ‘‘normal leaving’’ behavior
(problem 2-B).

After looking at these results, a natural question emerges:
Why is it easier to detect the pattern produced by the evacu-
ation drill than the ‘‘baseline’’ problem of detecting working
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TABLE 2. Effects of experimental conditions.

TABLE 3. Interactions among experimental conditions.

hours? We provide some insight into this question in the
discussion section.

VII. DISCUSSION
A. WHY IS PROBLEM II EASIER?
Initially, in our experimental design, detecting a ‘‘normal’’
(routine) human behavior pattern, such as the behavior of
people following a fixed working schedule, was considered
a ‘‘baseline’’ problem. This is because it is a common and
frequent behavior, thus providing a larger amount of avail-
able data that represents that particular pattern. Recognizing
working hours proved to be a more challenging problem, with
lower performance in classification, compared to recognizing
behavior during an evacuation drill.

By intuition, we have a sense that the following reasons
contribute to the observed differences.

1) The behavior exhibited during the drill is more dis-
tinct compared to how people respond to their working

schedules. When the alarm is triggered, individuals are
likely to respond immediately, not lingering in their
current activities to complete work tasks.

2) The drill behavior is shared by all occupants of the
building, which means there is no ‘‘noise’’ associated
with individuals not adhering to this behavior. In con-
trast, when studying Problem I, we analyze device
counts where most of the active WiFi-capable mobile
devices do not belong to people following a strict
working hours schedule (such as students, faculty, and
visitors). Therefore, Problem I involves more noise.

3) During the drill, as it is a behavior affecting all occu-
pants, there is a higher density of people moving
towards the exits. This higher density increases the
likelihood of individual behaviors matching those of
others. Moreover, individuals tend to exhibit more sim-
ilar movement speeds during the drill. In ‘‘normal’’
situations, people moving around the building may
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FIGURE 6. Interaction between statistics used and PCA with extra trees in problem I.

FIGURE 7. Interactions between size of aggregation intervals and PCA,
when using mean, variance and kurtosis as aggregation statistics, with
extra trees in problem I.

walk at varying distances from one another and display
more diverse speed patterns.

4) Furthermore, since the drill schedule is unknown, indi-
viduals cannot anticipate it and leave earlier as they
would for lunch or at the end of the day.

By considering these factors, one can see why Problem II
is comparatively easier than Problem I. Although it is not
straightforward to sort those factors in order of importance,
our understanding is that the ‘‘noise’’ factor is determinant.

B. EXTENDABILITY OF THE METHOD
The experiments for this study were conducted in an indoor
campus setting. We would like to address the extendability of
this method to other indoor or outdoor environments.

In terms of indoor settings, such as commercial malls,
hospitals, government buildings, airports, and railroad/metro
stations where Wi-Fi is available, there are no inherent
limitations preventing the implementation of this method.
Additionally, the method can be effectively applied in single-
floor settings, offering even better detection of emergencies
and unusual events compared to our study where AP device
counts could span several floors.

Another question that arises is whether a similar method
can be implemented using a different wireless technology.
Our intuition suggests that if the alternative technology offers
base station coverage with a granularity similar to indoor
Wi-Fi, then the method would be viable. However, if the tech-
nology has a larger base station coverage, device counting
alone may not provide sufficient information.

This brings us to the issue of outdoor deployment. Our
methodology relies on device counts to extract statistics that
can be correlated with user displacement, indicating emer-
gency situations. It is important to note that indoor confine-
ment naturally restricts and directs human mobility, which
aids in detecting anomaly situations. Thus, in an outdoor
setting, we would lack this advantageous constraint provided
by indoor premises.

Furthermore, when considering outdoor coverage, current
cellular technology has a much larger coverage granular-
ity compared to indoor Wi-Fi. Consequently, it becomes
unclear what types of emergencies could be detected solely
through device counting. However, our intuition suggests that
macro events spanning multiple areas of a city could still be
observed using this approach, although detecting problems
within a small area would be challenging.

Nonetheless, as outdoor cells become smaller and their
coverage is reduced, more information can be derived from
device counting. In such cases, the methodology presented
here could potentially assist in early emergency detection.

VIII. CONCLUSION
This paper demonstrates the effectiveness of our proposed
techniques, which rely solely on device counts at each access
point (AP), in detecting events that result in significant
changes in ambulatory patterns of large groups of people in
wireless network spaces. Our method requires no tracking,
collaboration, or meta-data analysis, imposes no constraints,
and utilizes existing hardware and software. Among the clas-
sification techniques tested, extra trees emerged as the most
suitable. We achieved excellent performance in detecting
emergency-like patterns with low false positives. The tech-
nique can be adapted for different behavioral groups and
localized emergencies. We urge stakeholders to continuously
collect and analyze device counting logs for early detection
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and management of emergencies. While the methodology
is technology-independent and can be adapted by mobile
service providers, further research is needed to determine its
effectiveness in different outdoor settings.
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