<  Retour au portail Polytechnique Montréal

Multi-Scale Model to Simulate Stress Directionality in Laser Powder Bed Fusion: Application to Thin-Wall Part Failure

Reza Tangestani, Apratim Chakraborty, Trevor Sabiston, Lang Yuan, Morteza Ghasri-Khouzani et Étienne Martin

Article de revue (2023)

Document en libre accès dans PolyPublie et chez l'éditeur officiel
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: Creative Commons: Attribution-Pas d'utilisation commerciale-Pas de modification (CC BY-NC-ND)
Télécharger (13MB)
Afficher le résumé
Cacher le résumé

Abstract

In this study, line heat inputs are lumped to improve the computational efficiency while preserving stress directionality in laser powder bed fusion (LPBF). The lumped hybrid line (LHL) model predicts part distortion accurately within 10 µm of the experimental error in reasonable time. The effects of part geometry and scanning strategies on part distortion and failure during LPBF of thin-wall components are evaluated. Eight different printing patterns including different vector lengths and interlayer scan rotations for five different part lengths are studied. Simulation results show that the compressive stresses in the longitudinal and build directions create buckling, which limits subsequent layer deposition. This causes in-process part failure called the limiting build height (LBH) effect. A strong correlation between the vector length and residual stresses is shown. Longer vector lengths generate smaller compressive residual stresses along the build direction while inter-layer scan rotations homogenize the internal stresses in the scanning plane. Increasing the vector length and introducing scan rotations are useful processing strategies to improve the LBH. Moreover, part failure can be mitigated by varying the part geometry. Increasing the part thickness reduces the susceptibility to buckling and increases the LBH, whereas part length alters the failure mode.

Mots clés

Laser powder bed fusion ; Superalloys ; Additive manufacturing ; Failure ; Numerical modelling ; Thin-wall

Sujet(s): 2100 Génie mécanique > 2100 Génie mécanique
Département: Département de génie mécanique
Organismes subventionnaires: Natural Sciences and Engineering Research Council of Canada
Numéro de subvention: RGPIN-2019-04073
URL de PolyPublie: https://publications.polymtl.ca/55094/
Titre de la revue: Materials & Design (vol. 232)
Maison d'édition: Elsevier BV
DOI: 10.1016/j.matdes.2023.112147
URL officielle: https://doi.org/10.1016/j.matdes.2023.112147
Date du dépôt: 02 nov. 2023 12:58
Dernière modification: 08 avr. 2024 11:05
Citer en APA 7: Tangestani, R., Chakraborty, A., Sabiston, T., Yuan, L., Ghasri-Khouzani, M., & Martin, É. (2023). Multi-Scale Model to Simulate Stress Directionality in Laser Powder Bed Fusion: Application to Thin-Wall Part Failure. Materials & Design, 232, 112147 (17 pages). https://doi.org/10.1016/j.matdes.2023.112147

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document