Ambre Dupuis, Camélia Dadouchi et Bruno Agard
Article de revue (2023)
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution-Pas d'utilisation commerciale-Pas de modification (CC BY-NC-ND) Télécharger (2MB) |
Abstract
In a context of growing demand for food and the scarcity of natural resources, the development of more sustainable agriculture is imperative. This means it is necessary to limit the environmental impact of agricultural activities on soil and water and to be mindful of the carbon footprint, while maintaining crop yields and economic benefits for producers. Crop rotation is a valuable tool in sustainable agriculture, but this technique has to be appropriately coupled with sustainable fertilization plans to optimize crops. The proposed methodology uses recurrent neural networks (RNN); more precisely, LSTMs, in a Seq2Seq architecture, to predict the most probable scenarios of crop rotations to be exploited in a field in subsequent growing seasons, according to cropping habits. The output can be used in crop models to build a decision support system for greater sustainability in agricultural production by allowing producers to choose the strategy that offers the best compromise between profitability and environmental impact.
Mots clés
agriculture 4.0; crop rotation; deep learning; Seq2Seq; LSTM
Sujet(s): |
1600 Génie industriel > 1600 Génie industriel 1600 Génie industriel > 1603 Logistique 4900 Biologie végétale et des arbres > 4901 Nutrition et métabolisme, photosynthèse 4900 Biologie végétale et des arbres > 4903 Croissance et développement des végétaux |
---|---|
Département: | Département de mathématiques et de génie industriel |
Centre de recherche: |
CIRRELT - Centre interuniversitaire de recherche sur les réseaux d'entreprise, la logistique et le transport LID - Laboratoire en intelligence des données |
Organismes subventionnaires: | Fonds de recherche du Québec – Nature et technologies, CRSNG / NSERC |
URL de PolyPublie: | https://publications.polymtl.ca/54344/ |
Titre de la revue: | Smart Agricultural Technology (vol. 4) |
Maison d'édition: | Elsevier |
DOI: | 10.1016/j.atech.2022.100152 |
URL officielle: | https://doi.org/10.1016/j.atech.2022.100152 |
Date du dépôt: | 23 janv. 2024 13:06 |
Dernière modification: | 28 sept. 2024 18:23 |
Citer en APA 7: | Dupuis, A., Dadouchi, C., & Agard, B. (2023). Methodology for multi-temporal prediction of crop rotations using recurrent neural networks. Smart Agricultural Technology, 4, 100152 (13 pages). https://doi.org/10.1016/j.atech.2022.100152 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions