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A B S T R A C T   

In a context of growing demand for food and the scarcity of natural resources, the development of more sus
tainable agriculture is imperative. This means it is necessary to limit the environmental impact of agricultural 
activities on soil and water and to be mindful of the carbon footprint, while maintaining crop yields and eco
nomic benefits for producers. Crop rotation is a valuable tool in sustainable agriculture, but this technique has to 
be appropriately coupled with sustainable fertilization plans to optimize crops. The proposed methodology uses 
recurrent neural networks (RNN); more precisely, LSTMs, in a Seq2Seq architecture, to predict the most probable 
scenarios of crop rotations to be exploited in a field in subsequent growing seasons, according to cropping habits. 
The output can be used in crop models to build a decision support system for greater sustainability in agricultural 
production by allowing producers to choose the strategy that offers the best compromise between profitability 
and environmental impact.   

1. Introduction 

An increase in global food requirements [1,2] coupled with a 
decrease in natural resources [3,4] and environmental awareness pro
mote a rethinking of agricultural practices towards sustainable agri
culture [5]. In this context, crop rotations are increasingly relevant. It is 
an ancestral practice [6,7] that favors the regeneration and fertility of 
the soil, limits soil erosion as well as the proliferation of pests, weeds and 
diseases [8]. These qualities make crop rotation a pillar of sustainable 
agriculture [9]. 

Several studies have focused on the prediction of crop rotation based 
on agronomic knowledge [10–13] and with a data-driven vision 
[14–22]. However, to the best of our knowledge, none of these studies 
have addressed forecasting for different years for which crops could be 
grown at the field level. 

This paper aims to fill this gap by proposing an RNN model to predict 
the crops that are most likely to be grown in periods n+1 to n+x, in a 
specific field, considering the past sequences of crops grown in a specific 
field. 

Knowing the most likely sequences of crop rotations considered by a 
producer could help develop sustainable fertilization plans [23]. Since 
each crop has specific needs [24], knowledge of the future sequence of 

crops grown in a field will help determine the current and future fer
tilizer needs of the field. The Government of Quebec in Canada, wants to 
rely on agronomic knowledge to meet the challenges of the agricultural 
sector. It supports producers in the implementation of sustainable 
practices by accompanying them with certified agronomists [25]. The 
use of a producer’s cropping patterns allows for greater acceptability 
and support for a relevant discussion by producers and agronomists. 
This knowledge will reduce the amount of fertilizer and herbicides used. 
Hence, it will allow producers to choose the strategy that offers the best 
compromise between mid-term profitability and environmental impact. 
Those results could then be used in crop models to build a decision 
support system for greater sustainability in agricultural production. 

The article is constructed so that that Section 2 presents the tools 
used in the methodology. First, preliminary concepts related to recur
rent neural networks (RNNs) (2.1) are introduced as well as LSTMs (2.2), 
the Seq2Seq architecture (2.3) and the Teacher Forcing method (2.4) 
used to train RNN models. Then, Section 3 will present the proposed 
methodology developed to predict the most probable scenarios of crop 
rotations to be exploited in a field in the subsequent growing seasons. 
Finally, Section 4 will discuss the limitations and future research axes 
related to the proposed methodology. 

* Corresponding author. 
E-mail address: ambre-manon.dupuis@polymtl.ca (A. Dupuis).  

Contents lists available at ScienceDirect 

Smart Agricultural Technology 

journal homepage: www.journals.elsevier.com/smart-agricultural-technology 

https://doi.org/10.1016/j.atech.2022.100152 
Received 8 December 2022; Accepted 9 December 2022   

mailto:ambre-manon.dupuis@polymtl.ca
www.sciencedirect.com/science/journal/27723755
https://www.journals.elsevier.com/smart-agricultural-technology
https://doi.org/10.1016/j.atech.2022.100152
https://doi.org/10.1016/j.atech.2022.100152
https://doi.org/10.1016/j.atech.2022.100152
http://crossmark.crossref.org/dialog/?doi=10.1016/j.atech.2022.100152&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Smart Agricultural Technology 4 (2023) 100152

2

2. Background 

Sequence-based forecasting is a specific supervised learning prob
lem. Sequence-based forecasting places particular importance on the 
order of observed events. Indeed, sequence processing requires an 
explicit representation of the order of occurrence of the observations in 
the period under study. Crop rotation prediction can be considered a 
Seq2Seq problem, since the objective is to predict the order of crops 
grown within a field, i.e., the order of elements within a sequence. 
Sequence prediction is a recurrent problem, and recurrent neural net
works (RNN) are a type of neural network specially designed for 
sequence processing [26] and one of the most widespread solutions for 
modeling sequential data [27]. 

2.1. Recurrent neural networks 

Sequential data assumes a dependency between the elements of the 
sequence. Hence, a specific neural network is needed to overcome the 
independence assumption involved in traditional neural networks [28]. 
A RNN can be seen as a loop within a “typical” neural architecture 
(ANN) [26]. This loop (Fig. 1) supports the temporal aspect of the data in 
a dynamic way, since the value of the previous hidden state is used as 
input for the current state [29]. It is supported with memory, allowing 
the neural network to learn from the ordered nature of sequential data. 

In contrast to the ANNs, RNNs take into account the temporality of 
the data and, therefore, the order in which the data was observed. 
Moreover, RNNs are able to model sequences of inputs and outputs of 
variable sizes [26]. RNNs are therefore used to address various problems 
and applications, for example, classification problems in medicine [30, 
31], textual analysis [32,33], detection of fraudulent transactions and 
abnormal behaviors [34,35], as well as for music generation or text 
generation. Finally, they are used in multi-temporal prediction problems 
[36,37], translation problems [38,39], or document summarization 
problems [40]. 

Despite their great potential, RNNs are not widely used on practical 
cases in industry, as they are considered difficult to train [41]. The 
Vanishing and exploding gradient are two problems frequently encoun
tered when using this type of model [42]. The model is trained by 
Backpropagation as a function of time. The longer the sequence is, the 
more the gradient will tend to decrease (Vanishing gradient) or to in
crease disproportionately (Exploding gradient), making it impossible to 
update the model weight. To overcome this problem, Hochreiter and 
Schmidhuber [43] propose a new RNN cell, the Long Short-Term Memory 
(LSTM) whose internal mechanism allows for a better management of 
the Backpropagation during training. 

2.2. The LSTM cells 

An LSTM neural network is a neural network made of n identical 
LSTM cells distributed over m layers. An LSTM cell (Fig. 2) consists of a 
memory (Ct) and three gates: a forget gate (ft), an input gate (it) and an 

output gate (ot). This internal architecture allow information to be 
transmitted from period to period. 

The equations governing the operation of an LSTM cell are described 
below [44]. 

ft = σ
(
Wxf xt + Whf ht− 1 + bf

)
(1)  

it = σ(Wxixt + Whiht− 1 + bi) (2)  

ot = σ(Wxoxt + Whoht− 1 + bo) (3)  

ĉt = tanh(Wxcxt + Whcht− 1 + bc) (4)  

ct = ft ⊙ ct− 1 + it ⊙ ĉt (5)  

ht = ot ⊙ tanh(ct) (6)  

With: 

σ(x)=
(

1
1+exp(− x)

)

, called sigmoid function

x⊙y=element − wise product

xt and ht = input and output vector at time t

Wxi,Whi,Wxf ,Whf ,Wxo,Who,Wxc,Whc =weight matrix for linear transformations

bi,bf ,bo,bc =bias vector

it,ft,ot =gate vectors

ct =memory cell state vector

ht− 1 =output vector of the previous time step 

Eqs. (1) and (2) define which parts of the past state vector (ht− 1) and 
the input vector (xt) will be used to update the memory cell state (ct) 
(Eq. (5)). The output gate (Eq. (3)) is used to determine the part of the 
updated cell state used to define the output state vector of the LSTM cell 
(ht) (Eq. (6)). 

This structure within the LSTM cells limits the loss of information 
over time when training the model by Backpropagation. Therefore, this 
type of RNN will be used in the following methodology (Section 3). 

2.3. The Seq2Seq architecture 

A sequence-based prediction of a sequence, also called Seq2Seq 
Prediction, is a generalization of the sequence-based prediction principle. 
Initially proposed to answer the translation problem [45], the RNN 
autoencoder is an architecture used to answer problems of Seq2Seq 
prediction [44]. 

As presented in Fig. 3, the auto-encoder is composed of two main 
parts, namely, the encoder and the decoder. 

The encoder consists of an LSTM layer containing nneurons of LSTM 
type. LSTM cells will be used a memories holding a summary repre
sentation of past events in a sequence. This representation, called the 

Fig. 1. Schematic comparison of ANN (Feedforward) and RNN architectures.  
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memory state (Ct) and the output vector state (ht), evolves with the 
sequence. Each element that constitutes the sequence (Xt) is associated 
with the representation (Ct− 1,ht− 1) of the previous element in order to 
update them (Eqs. (1) to (6)). When all the elements of the sequence 
have been evaluated, the Ct and ht states are used as a simplified rep
resentation of the complete input sequence. This representation is often 
referred to as the context vector. This context vector is used as the initial 
state of the decoder cells. 

The decoder uses the same structure as the encoder except the input 
elements from the sequence (Xt) are replaced by the vector provided for 
each element of the output sequence (st). A dense layer is added after the 
LSTM layer. This last layer, equipped with an activation function Soft
Max, allows us to obtain a probability of occurrence matrix (Ypred) of 
each of the activities for the nout years to be predicted. 

These two elements, encoder and decoder, permit sequential data to 
be processed that have different lengths of input and output [46]. 

2.4. Teacher forcing training 

There are several methods for training Seq2Seq templates. One of the 
most frequently used is the Teacher Forcing [47]. The principle of 
Teacher Forcing is to correct the model at each step of the prediction in 
order to limit the propagation of errors in the predicted sequence. 

In the context of Teacher Forcing, a set DTI is generated in order to 
compare the predictions of the model with the real observed values. The 
set DTI corresponds to the set Ytrain translated by one increment such that 
DTIt = Ytraint+1 . To do so, a code signifying the beginning of the sequence 
(< BOS >=Begining Of Sentence) is added to the beginning of the set Ytrain 

and the last element of the same set is deleted. 
DTI=[<BOS>, Ytrain, ..., Ytraint+|n− out|− 1 ] 
The correction is made by comparing the predicted value at time t 

(st) with the value actually observed at time t (DTIt+1). This method 
limits the accumulation of errors in the prediction, thus facilitating the 
convergence of the model and limiting the training time of the model 
[48]. 

3. Methods 

The prediction of crops grown at the field level in year n+1 [16,17] 
as well as the regional prediction of crop trends in year n+x [15] are 
discussed in the literature. Even though agricultural strategies are 
elaborated upon in a mid-term horizon, to the best of our knowledge, no 
methodology has been developed to propose a crop rotation model that 
is able to predict producer’s intention for periods n+1 to n+x at field 
level. This article intends to fill this gap by proposing a methodology to 
predict the most probable sequence of crops grown in a field in year n+1 
to n+x (Fig. 4). Each step of the methodology is detailed in the following 
subsections. 

In order to present the methodology, a didactical example is pro
posed. Table 1 represents events data in which a case is a unique real
isation of a process by the succession of activities in different time 
stamps. 6 activities (A, B, C, D, E, F) and two cases (1, 2) are represented. 
The time stamp indicates the time during which the activity was carried 
out in the given case. Note that the unit of the time marker (year, 
quarters, months, etc.) must be consistent with the context of produc
tion. In the context of predicting crop rotations, activities (A, B,..., F) can 
be thought of as crop types while cases can be thought of as the fields in 
which the crops are grown. For example, a record with case 1 and ac
tivity A could represent the corn crop in field 1. Then from Table 1, we 
may understand that in field 1, activity A occurred during the time 
periode t1, activity D occurred on during the time periode t2, and so on. 

3.1. Step 1: Data preparation 

The data preparation in Fig. 4 (step 1) mainly deals with record 
tracking, missing and duplicate data management, data encoding and 
formatting. 

First, the data has to be transformed in order to obtain the sequences 
of activities performed within a process over time. The traceability of 

Fig. 2. Diagram of an LSTM cell adapted from Wang et al. [44].  

Fig. 3. Autoencoder in a Seq2Seq architecture context.  

A. Dupuis et al.                                                                                                                                                                                                                                  
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records has to be ensured by defining an attribute that acts as an iden
tification key. An identification key has to, by definition, be unique to 
the object it identifies. In Table 1, the attribute ’Case’ can act as an 
identification key for each field. Ensuring the traceability of records 
allows duplicate records within a process to be identified and treated. 

As shown in Fig. 5, there are two types of duplicates that have to be 
treated accordingly. Records in which all information is repeated more 
than once are called complete duplicates (see red records in Fig. 5). On 

the contrary, partial duplicates are records that have an identical iden
tification key and time marker but have activities that vary (see yellow 
records in Fig. 5). 

In the first case, the excess records are removed. In the second case, 
the excess records are transformed into a code that represent the notion 
of partial duplication. The mention “<DUP>” is used to indicate the 
presence of partial duplicates. Fig. 5 shows how duplicate records are 
handled. 

This transformation limits data noise and the number of deleted 
records. 

Once traceability is guaranteed and duplicates have been processed, 
the activity sequences are highlighted using a pivot table. The activities 
are represented according to the process identification key and the 
attribute used as a time marker. This operation makes it possible to 
highlight the missing data within the processes (Fig. 6). 

Once the sequences are highlighted, the use of a sliding window, as 
proposed by Dupuis et al. [17], Zhang et al. [18], allows datasets to be 
defined, while guaranteeing the preservation of the order within the 
sequences. The sliding window is defined by 2 dimensions, noted as L 
and W. W = |nin| + |nout |, with |nin| = size of the sequence considered in 
input, |nout | = size of the sequence to predict, and L ≥ W 

In Fig. 7, the dimension L (in green) corresponds to the history on 
which a sliding window of size W (in yellow) is used. The dimensions L 
and W are two hyperparameters defined according to the context. 

The value of L is chosen according to the context of the study. In 
Fig. 7, the value L=7 allows to consider only the events after May 2021. 
The adjustment of the value of L allows more flexibility to the model. 
The use of sliding windows permits sequences of size W to be generated. 
However, these sequences often contain missing data that has to be 
processed. As previously defined, W can be decomposed into two parts, 
namely nin (the input sequence used for the prediction) and nout (the 
sequence to be predicted). This distinction implies two different treat
ments of missing data.  

1. Any record containing at least one missing piece of data in the nout set 
is removed from the data set. This decision is explained by the use of 
the data set. The nout data is the data we are trying to predict. 
However, it seems undesirable to predict missing data.  

2. Any record that exceeds the filtering threshold (SF) of missing data in 
the nin set is removed from the data set. For example, if a sequence 
length |nin|=10 is considered as input and if we set SF=75%, then any 
sequence containing more than 2 missing data will be removed. This 
choice is explained by the need for training and robustness of the 
model. The model has to be relatively robust and accept, to a certain 
extent, missing data. However, in order to be trained, the model has 
to be based on information. An empty sequence will only confuse the 
model. 

Afterward, the remaining missing data is encoded with “<PAD>”. 
Fig. 8 shows the missing data handling process for sequences with 

SF=50%, |nin|=3 and |nout |=2. The records colored in red meet the first 

Fig. 4. Proposed methodology.  

Table 1 
Event data of the didactical example.  

Activity Case Temporal stamp 

A 1 t1 
B 2 t1 
C 2 t3 
D 1 t2 
E 1 t2 
F 1 t3 
F 1 t3  

Fig. 5. Treatment of duplicate records according to two predefined rules.  

A. Dupuis et al.                                                                                                                                                                                                                                  
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missing data decision rule, while the record colored in green meets the 
second missing data decision rule. These records are therefore removed 
from the dataset. The remaining missing data is encoded with the value 
“<PAD>”. 

Thus, the remaining dataset has a fixed size and does not contain any 
missing data. It can therefore be split into two sets X and Y, as shown in 
Fig. 8, corresponding to the input sequences (size nbsequences × |nin|) and 
to the sequences to be forecast (size nbsequences × |nout |). 

In order to train and validate the performance of the prediction 

model, four new data sets are created (XPC, YPC, XPCtest , Ytest). The data are 
separated into a training set (75% of the records) and a test set (25% of 
the records). 

The dataset (DTI) is created in order to proceed to the learning by 
Teacher Forcing of the model. As explained in Section 2.4 and shown in 
Fig. 9, this last set corresponds to the YPC dataset from which the last 
value has been removed and “<BOS>” has been added at the beginning 
of the sequence. 

This transformation translates the sequence to be predicted by one 

Fig. 6. Sequencing of activities for each case according to time markers.  

Fig. 7. Sequence generation using sliding window with L=7 and W=5.  

Fig. 8. Process of handling missing data with SF=50% and generating X and y examples.  

A. Dupuis et al.                                                                                                                                                                                                                                  
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increment while maintaining the |nout | size of the output vector. 
Finally, the Xtrain, Ytrain and Xtest datasets are derived from the 

encoding and formatting of the XPC, YPC, XPCtest datasets so that they can 
be used as input to RNN models. 

To be fed to the recurrent neural network (RNN), the categorical data 
has to be encoded as numerical ones. The encoding of categorical data 
can be performed according to the Label encoding or One hot encoding 
process. In the former, each unique activity is assigned a unique value. In 
the latter, each activity is assigned a binary vector the size of the activity 
dictionary, where a 1 is placed at the location that represents the activity 
in question. A conversion dictionary, such as the one used in Dupuis 
et al. [17], has to be created. 

The choice of One hot encoding allows a matrix M in 3 dimensions to 
be generated for each dataset: the number of records, the size of the 
sequence and the number of unique activities. The schematic repre
sentation of the data encoding process for RNNs is proposed in Fig. 10. 

The encoding and formatting process are also used on the Ytest and 
DTI datasets. Thus, he eight data sets (XPC, YPC, XPCtest , Xtrain, Ytrain, Xtest , 
Ytest and DTI) are now created and prepared. Therefore, the creation of 
the prediction model can begin. 

3.2. Step 2: Creation of the RNN model 

The data are now ready to be used in the prediction model. In Fig. 4 
(step 2) the prediction model is created based on an Seq2Seq architec
ture using LSTM cells. The Seq2Seq architecture is chosen as it is the 
architecture dedicated to the task of sequence prediction from sequence 
input [26]. The LSTM cells are chosen since their internal structure 
limits the vanishing and exploding gradient problem, hence the training 
of the network will be eased [43]. 

As presented in Section 2.1, RNN models using a Seq2Seq architec
ture for sequence prediction rely on an “encoder-decoder” set linked by a 
context vector. In the case of a Seq2Seq architecture using LSTM cells, 
the context vector represents the internal states of the encoder’s LSTM 

cells once the entire input sequence has been evaluated. The creation of 
the RNN model for Seq2Seq prediction consists of setting the parameters 
for the layers that it is composed of. As mentioned by Schrimpf et al. 
[49] “The process of designing neural architectures requires expert 
knowledge and extensive trial and error”. This applied to the definition 
of Seq2Seq-LSTM hyperparameters. 

The first layer of the auto-encoding model is the input layer. As the 
Teacher Forcing method will be used to train the model (Section 2.4), the 
use of two sets of input data, namely Xtrain for encoder training and DTI 
for decoder training, is necessary. Thus, the input layer is composed of 
two blocks. The size of the input data has to be specified in order to 
maintain consistency throughout the model. The first block, allowing 
the integration of the set Xtrain, is sized to process matrices of size None ×

|nin| × nactivities. While the second one, allowing the integration of the set 
DTI, is sized to handle matrices of size None × |nout | × nactivities. The None 
dimension is used to consider the variability in the first dimension of the 
data matrix. Indeed, the number of sequences cannot be fixed in each 
data set since this number changes depending on the example 
considered. 

The internal structure of the encoder and its operation have been 
explained in a general way in Section 2.1. Although the principle of 
operation of LSTM cells is relatively complex, its implementation is 
relatively fast. The LSTM layer is constructed by determining the num
ber of neurons (nneurons) that it is composed of. This value is a hyper
parameter chosen by the user. Furthermore, the LSTM layer has to allow 
for the extraction of the Ct and ht states in order to generate the context 
vector used to link the encoder to the decoder. This is possible thanks to 
the parameterizable state return feature on the LSTM layers. Finally, it is 
important to specify the origin of the layer’s input data. Thus, the LSTM 
layer is linked to the first block of the input layer, namely, the one 
processing the Xtrain dataset. The output of the encoder is the context 
vector of dimension None× nneurons, a synthetic representation of the nin 
sequence. 

Concerning the decoder, the LSTM layer is built using the infor
mation from the encoder. The number of neurons present on the LSTM 
layer of the decoder will be the same as the one defined for the encoder, 
i.e. nneurons. Moreover, the states of the cells composing the LSTM layer of 
the decoder are initialized using the context vector from the final states 
of the encoder. This initialization allows the information collected by 
the encoder to be linked to the decoder. The output of the LSTM layer is 
used as input to the densely connected layer using the activation func
tion SoftMax. This layer is composed of nactivities neurons. This last layer 
proposes the probability vector of the occurrence of activities at a time t. 

Fig. 9. Generating the DTI set from YPC.  

Fig. 10. Data encoding process used on the YPC dataset for RNNs models.  

A. Dupuis et al.                                                                                                                                                                                                                                  
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As presented in Section 2.1, the main difference between the encoder 
and the decoder is the use of the vector predicted at time t (st) as the cell 
input for the prediction at time t + 1 (st+1). This feature allows an input 
of dimension None × nneurons to be transformed into an output matrix of 
size nout × nneurons. This is possible thanks to the parameterizable 
sequence feedback feature on the LSTM layers. 

In order to train the model according to the Teacher Forcing method, 
the DTI dataset has to be integrated with the decoder. This integration 
can be done by linking the second block of the input layer to the decoder. 

Fig. 11 represents the architecture of the recurrent neural network 
obtained as a result of step 2 of the methodology. This neural network 
has to now be trained in order to predict future sequences according to 
past sequences. 

3.3. Step 3: Model training 

Once the model is created, it needs to be trained using the Xtrain, Ytrain, 
and DTI datasets. The aim of the learning phase is to learn the weights 
allowing the loss function of the training set to be minimized. To do so, a 
loss function and an optimizer have to be defined. 

During the training, each record of Xtrain is used as input to the model. 
At each time step, the dense layer with the softmax activation function 
produces a vector of size 1 × nactivities which can be considered as the 
probability vector of activity occurrence for that specific time step. As 
explained by Jiang et al. [50], the training aims to maximize the prob
ability of the token at each time step. This can be expressed mathe
matically by Eq. (7). 

maxP(Y|X) = max
∏|Y|

t=1
P(yt|y1…yt− 1,X) (7)  

Where y1…yt− 1 are previously generated tokens 

This maximization can also be viewed as minimizing the loss be
tween the prediction and the ground truth. To calculate this loss in a 

Seq2Seq RNN context, the cross-entropy loss function is generally used 
[50,51] since it is used for multiclass prediction problems. The 
cross-entropy equation is proposed in Eq. (8) [50]. 

Cross Entropy(yt) = −
∑nactivities

i=1
δi(yt)log(P(ci|y1…yt− 1,X) (8)  

Where :

{c1,…, cN} : Search space in yt

δi(yt) =

{
1 if yt = ci

Else 0

P(ci|.) = Probability of the candidate token ci

calculated by the softmax function 

Therefore, once the nout probability vectors have been generated, the 
ŷ matrix of size nout × nactivities is compared to the ground truth of the Ytrain 

dataset using the cross entropy loss (CE) function. It is important to note 
that in order to use the cross-entropy loss function, the Ytrain dataset has 
to first be encoded using the one hot encoding technique. 

As shown in Eqs. (7) and (8), the RNN model uses the prediction of 
the previous time steps as input for the prediction of the next time step. 
At the beginning of the learning process, the model is not able to provide 
consistent predictions. This leads to error propagation and complicates 
the convergence of the model, which eventually leads to slow learning. 
The method Teacher Forcing (Section 2.4) is used to address this problem. 
It helps the model learning process by using the ground truth of the 
previous time step as input for the prediction in the training phase. Thus, 
during the training phase, the DTI dataset as well as the Xtrain dataset are 
used as the input to the model, while the prediction obtained is 
compared to the Ytrain dataset using the CE loss function. The loss 
function is combined with an optimizer to update the weights. For this 
purpose, the Adam optimizer based on the stochastic gradient is used 
[52]. The associated learning rate is a hyper parameter. 

In addition, the Early Stopping method is used to avoid overfitting by 

Fig. 11. Architecture of the RNN.  
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stopping the learning based on the monitoring of the model perfor
mance. 25% of the training set is used as a validation set to monitor the 
learning progress and to define a stopping criterion. Here, the stopping 
criterion is the accuracy on the validation set and is calculated at each 
epoch, i.e. at each exhaustion of the training inputs [53]. Learning is 
stopped when the accuracy of the validation set does not improve over a 
certain number of iterations, called patience. This avoids the stagnation 
of a local optimum. Using the Early stopping method determines the 
number of epochs required to train the model and thus eliminates a 
hyper parameter that needs to be set manually. 

The output of the trained model is a Ŷ matrix of size (nout × nactivities) 
composed of estimates of the probability of occurrence of each activity 
at each time step. This matrix will be used in the prediction phase to 
propose the most likely observed scenarios from the RNN model using an 
heuristic algorithm called BeamSearch. This algorithm explores the 
graph of event sequences in a more restricted way. 

3.4. Step 4: Creation of the conditional probability tables 

In the case of sequence prediction from sequences, the present and 
future states of the system can be defined as the succession of |nin| ac
tivities of the considered history and |nout | activities to be predicted, 
respectively. Thus XPC and YPC are used to create |nin| conditional 
probability matrices PC such that: 

PCz(|i|×|j|) =

⎡

⎣
w11 ⋯ w1j
⋮ ⋱ ⋮

wi1 ⋯ wij

⎤

⎦ (9)  

Where :

wij = P(j|i)
∑|j|

j=1
wij = 1 ∀i  

With :

i = Unique sequence of size |nin| in XPCz

j = Unique sequence of size |nout| in YPCz

z ∈ [1; |nin|]

The objective is to determine from a history already observed in the 
data set the probability that an activity (or sequence of activities) will 
occur. The larger the size of the considered history |nin|, the more ac
curate the prediction will be. But, the larger |nin| is, the lower the 
probability of having already observed a specific sequence in the 
training set and thus the less robust the model will be. Indeed, if a 
sequence is never observed in the training set but appears in the test set, 
the conditioned probability tables are unusable. 

|nin| conditioned probability tables of size i, j are created with 
i= |nout | and j ∈ [|nin|, |nin| − 1,…,1]. The conditioned probability model 
used corresponds to a set of |nin| tables such that: 

PC =
{

PC|nin |;PC|nin |− 1;…;PC1
}

Fig. 12 represents the generation of conditioned probability tables 
considering the sets XPC and YPC as training data. 

Based on the example proposed in Fig. 12, if a sequence [C,Z,A]
appears during the test of the model, then the model will predict - with a 
probability of 50% - the appearance of sequences [G,H] and [B,E]. These 
values are obtained using the PC1 table since the sequences [C,Z,A] (in 
table PC3) and [Z,A] (in table PC4) have never been encountered in the 
proposed training sets. It is the same for the other combinations. 

The PC tables are coupled with the RNN model’s prediction in the 
prediction step in order to improve its performance. 

3.5. Step 5: Prediction of the most probable sequences used from n+1 to 
n+x 

The RNN model generates crop sequences from a context vector and 
a set of possibly feasible activities. Although the RNN model relies on 
historical data for its training, it is possible that the predicted sequences 
are a combination of activities that are not present in the training set. 
Assuming that a sequence already observed in the data set is more 
plausible than the appearance of a new sequence for the same given 
context, predictions proposing a new combination of activities for a 
given context should be penalized without being removed from the set of 
possible sequences. 

The confrontation of the results obtained with the RNN model with 
those obtained with the PCs allows plausible results to be proposed, 
while remaining open to the discovery of new sequences. The fore
casting step has three phases: (1) the forecast by inference from the RNN 
model, (2) the forecast from the conditioned probability (CP) model, and 
(3) the integration of the results of the two models (Fig. 13). 

Forecast by inference from the RNN model. 
The BeamSearch algorithm is a heuristic that explores the graph of 

event succession possibilities in a restricted way. Indeed, when it ex
plores the graph, the algorithm considers only a restricted set of child 
nodes, thus maximizing the global probability of realizing a sequence. 
The number of options considered, called Beam Width, is a user-defined 
hyperparameter. The use of the Teacher Forcing method is frequently 
associated with the BeamSearch [47]. Park et al. [36] uses this associa
tion to define the trajectories most likely to be taken by drivers. This 
algorithm is used on the RNN models in order to propose the Beam Width 
most probable sequences provided by the RNN model. 

To do so, the prediction by inference from the RNN model consists of 

Fig. 12. Creation of |nin| conditional probability tables based on the sets XPC and YPC.  
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using the RNN model previously trained on the Xtest dataset. The Xtest 
data are encoded into a context vector by the model encoder. The 
decoding phase uses only the predicted values at time t to predict the 
value at time t + 1 since the actual observed values (set DTI) are not 
available in the test phase. To predict the first item in the nout sequence, 
the context vector is associated with an empty vector of dimension 
nactivities. The decoder outputs a probability vector of the culture exploi
ted at time t+ 1. This probability vector is then associated with the 
context vector and used in the decoder to output the probability vector 
of the culture exploited at time t+ 2. This process continues until the nout 
probability vectors are obtained. The matrix of predicted sequences of 
size nout × nactivities is considered as the output of the model. It is on this 
matrix that the BeamSearch algorithm is applied. As mentioned above, 
the BeamSearch algorithm aims to maximize the overall probability of a 
sequence being completed. For this purpose, each combination of ac

tivity, call Seq, is scored using the log-likelihood function as defined in 
Eq. (10). 

RNN(Seq) =
∑

xi∈Seq
log(Ŷ (xi)) (10) 

This score is called the RNN(Seq) and it provides an order to the 
sequences. The BeamWidth most probable sequences Seq are those with 
the maximum RNN(seq). As a reminder, the BeamWidth is an hyper
parameter defining the number of options considered. Those BeamWidth 
sequences and their respective RNN(Seq) scores are then extracted to be 
integrated with the CP model results. 

Fig. 14 illustrates the forecast by inference from the RNN model with 
the input sequence [DCA] and BeamWidth = 3. 

First, the [DCA] sequence is encoded as a One-Hot matrix, which is 
then fed to the trained RNN model. As a result, the matrix is produced 

Fig. 13. Detailed forecasting process.  

Fig. 14. Example of RNN prediction process with BeamSearch for the input sequence [D,C,A].  
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and the log-likelihood of each output sequence is calculated. The se
quences [GE], [GH] and [GE] are the 3 sequences with the highest RNN 
(Seq). Therefore, they are extracted to be used in the prediction of the 
conditioned probability (CP) model and the calculation of the overall 
score. 

Forecast from the conditioned probability (CP) model. 
The prediction from the PC model uses the XPCtest dataset with the PC 

tables to obtain the probability vector of occurrence of each sequence to 
be predicted. For a given historical sequence present in the XPCtest dataset, 
each possible output sequence and their associated probabilities of 
occurrence are stored in a dictionary called PCi[XPCtest ] where i ∈ [1,|nin|]. 
Fig. 15 represents the generation of the |nin| = 3 dictionaries of proba
bility, given the input sequence [DCA] and the PC tables presented in 
Fig. 12. 

Then, the sequences Seq proposed by the RNN model are used to 
extract the pertinent probability of occurrence PCi[XPCtest ](Seq). If the 
sequence Seq is not represented in the dictionaries, the associated 
probabilities are set to 0. Then, the logarithmic function is applied to the 
PCi[XPCtest ](Seq) probabilities in order to be integrated with the RNN(Seq)
results when calculating the overall score of the Seq sequence. Since the 
logarithm of the zero value is − ∞, a substitute value, called k, is use as a 
penalty value for improbable sequences. 

Given the results presented in Figs. 14 and 15, the sequences [GE], 
[BE] and [GH] should be evaluated. If the penalty value is k = − 10, 
then PC3,[DCA]([GE]) = PC2,[CA]([GE]) = PC1,[A]([GE]) = − 10 since [GE] 
does not appear in any of the outputs of the PC tables. The same can be 
inferred for the PC3,[DCA]([BE]) and PC2,[CA]([BE]) since [BE] have never 
been seen following sequence [DCA] or [CA] in the training dataset. On 
the other hand, PC3,[DCA]([GH]), PC2,[CA]([GH]), PC1,[A]([GH]) and 
PC1,[A]([BE]) have specific values since they appear in the PC dictionaries. 
More precisely, PC3,[DCA]([GH]) = PC2,[CA]([GH]) = log(1) = 0 and 
PC1,[A]([GH]) = PC1,[A]([BE]) = log(0.5) = − 0.3. 

Those results are then used in the last step of the prediction phase, 
the computation of the general score of each sequence by the integration 
of the results of the two models. 

Integration of the results of the two models. 
The integration of the results of the two models is done with a linear 

function (Eq. (11)). 

Score(Seq) = RNN(Seq) + ω|nin |PC|nin |(Seq) + ω|nin − 1|PC|nin |− 1(Seq) + …
+ω1PC1(Seq)

= RNN(Seq) +
∑|nin |

k=1
ωkPCk(Seq)

(11)  

With ωk the coefficient of importance associated to the PCk table.

For a historical sequence H of given size |nin|, the RNN model pro
poses BeamWidth possible sequences (Seq) with the associated score 
RNN(Seq). For each of these sequences, the score RNN(Seq) proposed by 
the RNN model is summed to each PCi(Seq) weighted by its corre
sponding ωi from the ω vector. Eq. (11) allows the predicted sequences 
already observed in the dataset to be valued, without eliminating the 
new sequences produced by the RNN model. 

The use of a weighted sum allows the importance given to each of the 
conditioned probability tables to be adjusted. As seen previously, the 
longer the history considered, the greater the accuracy of the forecast. 
Thus, the weights ω associated with the tables that consider the longest 
history should be the most important. 

Once the set of predicted sequences has been evaluated, the se
quences are ranked in descending order of Score. The sequences with the 
highest score are the sequences with the highest probability of occur
rence based on the historical sequence H provided and the RNN and PC 
models. 

Fig. 16 summarizes the example of the prediction process with H=

[D,C,A], ω = [0.1,0.05,0.01] using the PC tables presented in Fig. 12. 
The output of the prediction is an ordered list of size N of the se

quences most likely to be observed following sequence H. The closer the 
Score(Seq) is to 0, the higher the certainty of the model’s prediction that 
can be considered. Evaluation of the performance and applicability of 
the methodology should be undertaken using a real case study as pro
posed in Dupuis et al. [54]. 

4. Discussions 

The proposed methodology predicts the most probable crops to be 
grown in a field from year n+1 to year n+x, taking into consideration 
the producer’s habits. Not only is one probable crop rotation proposed, 
but an ordered list of crop rotations is also provided, with each list 
having a certain probability of occurrence. This gives options to a farmer 
who can choose the list of crop rotations he/she prefers, taking into 

Fig. 15. Example of a PC dictionary generation for the input sequence [D,C,A].  
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consideration implications on future possible crops to grow. 
Based on LSTMs neural networks (RNN), the Seq2Seq-LSTM model 

proposed remains to be explored. The data preparation may generate 
important losses of information that would be of interest to quantify, and 
the treatment of missing data should be studied in more detail. It would 
also be relevant to evaluate the distribution of sequences excluded due 
to missing data to ensure that no exploitation pattern is excluded from 
the dataset. This would be equivalent to testing the randomness of 
missing data in the dataset. The hypothesis of a random distribution of 
missing data supported in this study has to be validated. 

The optimization of hyperparameters and the choice of training 
methods should be further investigated in order to improve the perfor
mance of the model. The actual trial-and-error tuning of hyper
parameters is a tedious task that does not ensure the optimality or near- 
optimality of the result. Defining a standardized tuning methodology for 
the Seq2Seq-LSTM architecture should be considered as an excellent 
research opportunity [49] and could positively influence the results 
obtained in this project. 

During the training phase, the Cross-Entropy (CE) loss function is 
used along with the Teacher Forcing method. This choice leads to a well- 
known bias during training called Exposure Bias [47,51]. Indeed, the 
systematic use of the observed data (DTIt) during the training of the 
model can lead to an accumulation of prediction errors during the test 
phase since the model will never have been confronted with its own 
prediction errors [47]. This is why other methods such as Professor 
Learning or scheduled sampling [47,51] have emerged. It will be of in
terest to test those other kinds of teaching methods to compare and 
improve the performance of the prediction model. Also, using the mixed 
cross-entropy loss function (mixed CE) defined by Li and Lu [51] instead 
of the general CE loss function would relax the mapping process to a 
one-to-many mapping process instead of one-to-one, as CE does. These 
changes would probably have a beneficial effect on the performance of 
the model, improving the training of the RNN and thus its rate of good 
predictions. 

Finally, the quality of the database used limits the quality of the 
forecasts proposed by the model. Indeed, the structure and management 
of the database are responsible for the traceability of crop histories, 
particularly in the case of split fields. The past history of the split field 
must be accessible since it contains relevant information about cropping 
sequences which should not be neglected. Evaluation of the performance 
and applicability of the methodology should be undertaken using a real 
case study as proposed in Dupuis et al. [54]. 

5. Conclusion 

In a context of sustainable agriculture, the forecasting of future crops 
in the medium term is necessary for the planning and development of 
coherent fertilization plans, and to limit the environmental impact of 
agricultural activities. This study focuses on predicting the intentions of 
agricultural producers in the medium term with regards to a crop 
rotation history in a field. 

It is based on the use of recurrent neural networks (RNN); more 
specifically, LSTMs and the Seq2Seq architecture specialized in the 
prediction of sequences from sequences. The Seq2Seq-LSTM model is 
associated with a conditioned probability (CP) model to refine the pre
diction results by prioritizing sequences already observed in the training 
set. 

This methodology is a step towards more sustainable agriculture, 
since it will allow the development of medium-term sustainable fertil
ization plans that meet the needs of crops and limit the environmental 
impact of agricultural activities. Each crop rotation scenario considered 
in the medium to long-term could be evaluated according to the eco
nomic and environmental criteria considered by the producer via a 
growth model such as APSIM [55]. This knowledge will reduce the 
amount of fertilizer and herbicides used. Hence, it will allow producers 
to choose the strategy that offers the best compromise between mid-term 
profitability and environmental impact for farmers and producers. 

Research axes such as the optimization of hyperparameters and the 
use of different training methods should be explored. An evaluation of 
the performance of the tool resulting from the methodology is proposed 
by Dupuis et al. [54]. 
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