Loic Parrenin, Christophe Danjou, Bruno Agard et Robert Beauchemin
Article de revue (2023)
Document en libre accès dans PolyPublie et chez l'éditeur officiel |
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution-Pas d'utilisation commerciale-Pas de modification (CC BY-NC-ND) Télécharger (1MB) |
Abstract
Wheat tempering conditions grains before a milling process begins. Process adjustments must be made to reach a desired level of flour quality and yield, depending on multiple factors. This article aims to develop a decision support tool to help operators adjust the first-stage tempering parameters. It is based on a regression model that predicts an increase in organic wheat moisture content according to the properties of the wheat (initial wheat moisture content, wheat protein content and wheat temperature), process parameters (targeted wheat moisture content, wheat flow rate, water flow rate, wheat quantity and resting time) and tempering conditions (water quantity, average day temperature and average day humidity). The increase in wheat moisture achieved during the first tempering stage varies between 0% and 5%. Five regression models were compared: OLS, LASSO, RIDGE, ElasticNet and XGBoost. The models have been developed and tested from a case study at an organic wheat mill. The results indicate that the LASSO model outperformed others, with an average prediction error of 0.428%. The model showed the importance of humidity and temperature factors during the tempering process. The flow of water and wheat were the most influential parameters for an increase in wheat moisture content.
Mots clés
decision support tool; industry 4.0; multiple regression; wheat tempering
Renseignements supplémentaires: | Groupe de recherche: Laboratoire Poly-industries 4.0 |
---|---|
Sujet(s): |
1600 Génie industriel > 1600 Génie industriel 1600 Génie industriel > 1606 Gestion de la production |
Département: | Département de mathématiques et de génie industriel |
Centre de recherche: |
LID - Laboratoire en intelligence des données Autre |
Organismes subventionnaires: | La Milanaise, Ministère de l'Agriculture, des Pêcheries et de l'Alimentation du Québec (MAPAQ) |
Numéro de subvention: | IA119053 |
URL de PolyPublie: | https://publications.polymtl.ca/53655/ |
Titre de la revue: | International Journal of Food Science and Technology (vol. 58, no 10) |
Maison d'édition: | John Wiley & Sons |
DOI: | 10.1111/ijfs.16406 |
URL officielle: | https://doi.org/10.1111/ijfs.16406 |
Date du dépôt: | 10 juil. 2023 16:30 |
Dernière modification: | 10 oct. 2024 17:12 |
Citer en APA 7: | Parrenin, L., Danjou, C., Agard, B., & Beauchemin, R. (2023). A decision support tool for the first stage of the tempering process of organic wheat grains in a mill. International Journal of Food Science and Technology, 58(10), 5478-5488. https://doi.org/10.1111/ijfs.16406 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions