<  Retour au portail Polytechnique Montréal

An Efficient Track-Scale Model for Laser Powder Bed Fusion Additive Manufacturing: Part 1- Thermal Model

Reza Tangestani, Trevor Sabiston, Apratim Chakraborty, Waqas Muhammad, Yuan Lang et Étienne Martin

Article de revue (2021)

Document en libre accès dans PolyPublie et chez l'éditeur officiel
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: Creative Commons: Attribution (CC BY)
Télécharger (3MB)
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Matériel supplémentaire
Conditions d'utilisation: Creative Commons: Attribution (CC BY)
Télécharger (169kB)
Afficher le résumé
Cacher le résumé

Abstract

This is the first of two manuscripts that presents a computationally efficient full field deterministic model for laser powder bed fusion (LPBF). A new Hybrid Line (HL) heat input model integrates an exponentially decaying (ED) heat input over a portion of a laser path to significantly reduce the computational time. Experimentally measured properties of the high gamma prime nickel-based superalloy RENe 65 are implemented in the model to predict the in-process temperature distribution, stresses, and distortions. The model accounts for specific properties of the material as different phases. The first manuscript presents the HL heat transfer model, which is compared with the beam-scale exponentially decaying model, along with the melt pool geometry obtained experimentally by varying the laser parameters. The predicted melt pool geometry of the beam-scale ED model is shown to have good agreement with experimental measurements. While the proposed HL model exhibits lesser accuracy in predicting the melt pool geometries, it can predict the cooling rates and nodal temperatures as accurately as to the ED model. Moreover, under large time integration steps, the HL model becomes more than 1,500 times faster than the ED model.

Mots clés

laser powder bed fusion; finite element modelling; cooling rate; melt pool; superalloys; residual-stresses; finite-element; simulation; prediction; distortion;

Département: Département de génie mécanique
Organismes subventionnaires: CRSNG/NSERC
Numéro de subvention: RGPIN2019-04073
URL de PolyPublie: https://publications.polymtl.ca/53239/
Titre de la revue: Frontiers in Materials (vol. 8)
Maison d'édition: Frontiers Media S.A.
DOI: 10.3389/fmats.2021.753040
URL officielle: https://doi.org/10.3389/fmats.2021.753040
Date du dépôt: 18 avr. 2023 15:00
Dernière modification: 27 avr. 2024 12:21
Citer en APA 7: Tangestani, R., Sabiston, T., Chakraborty, A., Muhammad, W., Lang, Y., & Martin, É. (2021). An Efficient Track-Scale Model for Laser Powder Bed Fusion Additive Manufacturing: Part 1- Thermal Model. Frontiers in Materials, 8, 753040 (14 pages). https://doi.org/10.3389/fmats.2021.753040

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document